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ABSTRACT

There are various approaches for quantitative estimation
of reservoir properties from seismic inversion. A general
Bayesian formulation for the inverse problem can be imple-
mented in two different work flows. In the sequential ap-
proach, first seismic data are inverted, deterministically or
stochastically, into elastic properties; then rock-physics mod-
els transform those elastic properties to the reservoir property
of interest. The joint or simultaneous work flow accounts for
the elastic parameters and the reservoir properties, often in a
Bayesian formulation, guaranteeing consistency between the
elastic and reservoir properties. Rock physics plays the im-
portant role of linking elastic parameters such as impedances
and velocities to reservoir properties of interest such as lithol-
ogies, porosity, and pore fluids. Geostatistical methods help
add constraints of spatial correlation, conditioning to differ-
ent kinds of data and incorporating subseismic scales of
heterogeneities.

INTRODUCTION

This paper reviews seismic inversion schemes �deterministic and
tochastic� that incorporate rock-physics information and geostatis-
ical models of spatial continuity. We focus on techniques that go be-
ond inverting for the elastic parameters �e.g., impedances, elastic
oduli� and try to infer reservoir properties of interest, such as

ithologies, porosities, and fluid saturations. Doyen’s book �2007� is
n excellent, easy-to-read summary of many of the methods de-
cribed.

The transformation of any geophysical data into physical proper-
ies of the earth such as elastic or electrical parameters can be posed
s an inverse problem. General inverse theory is a mathematically
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ich discipline, and many excellent books on geophysical inverse
heory exist �e.g., Menke, 1984; Tarantola, 1987; Parker, 1994; Sen
nd Stoffa, 1995; Oliver et al., 2008�. However, the goal of using
eophysical methods for reservoir characterization usually goes be-
ond estimating the physical quantities to which a remote-sensing
xperiment responds. Rather, the final goal usually is to infer reser-
oir properties that include characteristics of the rocks �lithology,
uid, porosity� and the regime of physical conditions �pressure, tem-
erature� to which they are subjected.

Seismic-reflection data are used in reservoir characterization not
nly for obtaining a geometric description of the main subsurface
tructures but also for estimating properties such as lithologies and
uids. However, transforming seismic data to reservoir properties is
n inverse problem with a nonunique solution. Even for noise-free
ata, the limited frequency of recorded seismic waves makes the so-
ution nonunique. The inversion of seismic data for reservoir proper-
ies is more complicated in practice because of �1� the ever-present
oise in the data, �2� the forward-modeling simplifications needed to
btain solutions in a reasonable time, and �3� the uncertainties in
ell-to-seismic ties �depth-to-time conversion�, in estimating a rep-

esentative wavelet, and in the links between reservoir and elastic
roperties.

We focus our review on methods of seismic inversion for reser-
oir characterization that incorporate geology, rock-physics or
etrophysical knowledge, and geostatistics. A combination of elas-
ic-property estimates from seismic inversion and rock physics or
etrophysics for predicting reservoir properties is a key and classical
rocedure in reservoir characterization. Recent developments in-
lude rock-physics relations as constraints to the inversion. Geosta-
istics includes the constraints imposed by spatial correlation, repre-
ented by variograms, Markov random-field models, or multipoint
patial statistics captured in training images. Geostatistical methods
imulate small-scale variability not captured in seismic data because
f limited resolution. Geostatistical models can be used at the begin-
ing of the stochastic inversion to provide geologically consistent
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75A166 Bosch et al.
rior models or after extracting and classifying seismic attributes to
mpart realistic geologic patterns and spatial correlation.

Before describing approaches in quantitative seismic interpreta-
ion, we discuss some of the important reasons for quantifying un-
ertainty of the interpretation.

WHY QUANTIFY UNCERTAINTY?

Subsurface-property estimation from remote geophysical mea-
urements is always subject to uncertainty because of many inevita-
le difficulties and ambiguities in data acquisition, processing, and
nterpretation. Most interpretation techniques give us some optimal
stimate of the quantity of interest. Obtaining the uncertainty of that
nterpretation usually requires further work and hence comes at an
xtra cost. So what extra benefits do we receive? Why care about
uantifying uncertainty? Indeed, why quantify uncertainty at all?

Uncertainty in assessing reservoir properties from seismic data
omes from several sources. One source of uncertainty is measure-
ent errors in the seismic and well-log data. In the case of seismic

nformation, the original data are processed to form seismic images
f the subsurface. Similarly, the original well measurements are pro-
essed to calculate a series of medium properties. In both cases, the
ata-processing stage involves uncertainty. Seismic modeling is
ased on an approximate wave-propagation model for the medium,
uch as the isotropic elastic model commonly used for inversion. In
ddition, uncertainty is associated with the rock-physics transforms
rom elastic properties to reservoir properties and scale issues.
ouck �2002� shows a formulation to account for geologic, interpre-

ation, and measurement uncertainties in a Bayesian framework to
nterpret seismic amplitude-variation-with-offset �AVO� data for
eservoir properties. Quantitative seismic-interpretation schemes at-
empt to account for different sources of uncertainties �or at least
arts of them� in different ways.
One fundamental reason for quantifying uncertainty stems from

ur accountability as responsible scientists. We know that models
re approximate, data have errors, and rock properties are variable.
o as responsible scientists, we appropriately report error bars along
ith interpretation results. Error bars lend credibility.Amore practi-

al reason for understanding uncertainty is for risk analysis and opti-
al decision-making. Quantifying uncertainty helps us to estimate

ur risk better and possibly to take steps to protect ourselves from
hat risk. Uncertainty assessments are also useful in data integration
nd in estimating the value of additional information for reducing
ncertainty. Complex interpretation processes such as reservoir
haracterization usually require integrating different types of data
rom different sources. Understanding the uncertainties associated
ith the different data sets helps us to assign proper weights �and dis-

ard unreliable data� before we combine them in the interpretational
odel.Additional data �e.g., S-wave data in addition to P-wave seis-
ic data� may help to clarify ambiguities and reduce uncertainty —

ut not always. Estimating the value of additional information re-
uires quantitative assessment of uncertainty.

SEISMIC DATA TO RESERVOIR PROPERTIES:
POSING THE PROBLEM

Any inversion problem can be posed as a Bayesian inference
roblem, i.e., update the prior knowledge, accounting for observa-
ions �e.g., Tarantola, 1987, 2005; Duijndam, 1988a, 1988b; Ulrych
Downloaded 18 Sep 2010 to 190.103.42.56. Redistribution subject to 
t al., 2001�. It can be expressed as Posterior�Constant�Prior
Likelihood. Using symbols, it can be expressed as

� post�m��c�prior�m��data�dobs�g�m��, �1�

here � post�m� is the posterior probability density and �prior�m� is
he a priori probability density. The value �data�dobs�g�m�� is the
ata-likelihood function; it depends on the observations dobs and
heir uncertainties, the forward-modeling operator g that maps the

odel space into the data space, and the modeling uncertainties. In
quation 1, m specifies the earth model parameter configuration, and
is a constant for normalizing the posterior probability density. The

orward operator may be a simple function with an analytic form, a
atrix operator, or, more generally, an operator or computational al-

orithm with no simple analytic expression.
The general formulation in equation 1 accepts different types of

olution approaches. Two major lines are �1� to search the maximum
f the posterior probability density or �2� to produce samples from
he posterior probability density. The first category is commonly
alled optimization, error minimization, or the deterministic ap-
roach. The second category is known as the stochastic, Monte Car-
o, or sampling approach. The sampling approach is more general
ecause it assesses the marginal posterior probability density and not
ust the maximum probability. However, the two approaches con-
uce to the same maximum probability estimate if the same informa-
ion, data, and physics are used.

The solutions of an inverse problem are the set of earth-model
onfigurations that, when forward modeled into synthetic data,
atch the real data within some tolerance. Specifically, in seismic

nversion, we invert for models of elastic properties: P-wave imped-
nce, S-wave impedance �or velocities�, and density. However, for
eservoir characterization, these realizations of elastic parameters
ust be transformed to useful reservoir properties such as litholo-

ies, porosities, and saturations. When the model parameterization
s directly in terms of reservoir properties �lithofluid classes, net to
ross, porosity�, then the likelihood includes the rock-physics model
elating reservoir properties to elastic properties as well as the wave-
ropagation model relating elastic properties to seismic data. Spatial
orrelation of the model parameters may be incorporated into the
rior model, though not all of the published Bayesian inversion
ethods do so.
The formulation for the joint seismic and petrophysical inversion

equires a partition of the model space in reservoir and elastic medi-
m parameters m� �mres,melas� and decomposing the prior informa-
ion factor, in equation 1, according to the chain rule �e.g., Bosch,
999, 2004�:

�prior�mres,melas���petro�melas�mres��prior�mres�, �2�

here �prior�mres� is the prior probability density for the reservoir pa-
ameters and �petro�melas �mres� is a conditional probability for the
lastic parameters that summarizes the rock-physics or petrophysi-
al information on reservoir- and elastic-property relationships.
imilar formulations for the prior density in the joint petrophysical
nd seismic inversion are described by Eidsvik et al. �2004�, Gun-
ing and Glinsky �2004�, Larsen et al. �2006�, Bosch et al. �2007�,
pikes et al. �2007�, Buland et al. �2008�, González et al. �2008�, and
osch et al. �2009b�. Grana and Della Rossa �2010� use Gaussian
ixture models in a Bayesian framework, combining statistical rock

hysics with seismic inversion to obtain a probabilistic estimation of
etrophysical properties.
SEG license or copyright; see Terms of Use at http://segdl.org/



p
e
t

w
w
v
t
r
c
a

p
v
d
s
2
e
c
v
s
f
s
w
e
s

p
t
t
p
w
t
i
2
m
�
t
r
H
m
i
c
d
e
o
s
f

r
s
i
c

t
c
g
t
p
t

a
d
�
z
s
t
t
b
a
w
f
1
p
T
d
t
f
c
d

p
s
m
s
j
m
t

s

Seismic inversion for reservoir properties 75A167
The formulation of the posterior probability density for the joint
etrophysical and seismic inversion can be written by inserting the
xpanded prior information in expression 1 and modeling the condi-
ional density �e.g., Bosch, 2004�:

� post�mres,melas��c�petro�melas� f�mres���data�dobs

�g�melas���prior�mres�, �3�

here the petrophysical conditional density is �petro�melas� f�mres��,
ith f being the petrophysical forward function that maps the reser-
oir model parameters to the elastic model parameters. In general,
he petrophysical factor accounts for the deviations of the elastic pa-
ameters from their expected petrophysical transformed values, un-
ertainties of the petrophysical forward function, and spatial vari-
bility of the deviations.

Many different work flows combine seismic inversion for elastic
roperties, geostatistics, and rock-physics models to predict reser-
oir properties. The work flows may be grouped in two categories,
epending on whether the combination is stepwise or unified in a
ingle formulation. The sequential or cascaded approach �Dubrule,
003; Doyen, 2007� consists of first inverting the seismic data for
lastic properties and then using rock-physics models and a statisti-
al classification scheme to transform the elastic properties to reser-
oir properties, which may then be used as soft data to constrain geo-
tatistical simulations of reservoir properties. The seismic inversion
or elastic properties may be a deterministic gradient-based inver-
ion or a stochastic inversion. In contrast, the joint or simultaneous
ork flow accounts for the elastic parameters and the reservoir prop-

rties together, often in a Bayesian formulation, guaranteeing con-
istency between the elastic and reservoir properties.

The justification of a unified formulation for the seismic and
etrophysical inversions can be considered in the issues of exacti-
ude, precision, and quantification of the uncertainties. The exacti-
ude �absence of bias� of parameter estimates �mean, maximum
robability, median� is equivalent between the cascaded and joint
ork flows if the relationship between elastic and reservoir parame-

ers is linear; for other cases, the unified approach
mproves the exactitude of estimates �Bosch,
004�. The unified approach also provides a for-
ulation for calculating combined uncertainties

petrophysical dispersion and overlapping of dis-
ributions, seismic modeling, and observation er-
ors�, particularly in Monte Carlo solutions.
owever, the difference between work flows re-
ains methodological, whereas the crucial issue

s the combination of quality seismic, petrophysi-
al, and geostatistical information. Results with
ifferent work flows may be very close and differ-
nces may be negligible when the same data, pri-
r information, physics, parameterization, and
patial models are used. Figure 1 shows three dif-
erent work-flow schematics.

SEISMIC INVERSION

Although our focus is on methods for assessing
eservoir properties, in this section we briefly de-
cribe some of the traditional methods for invert-
ng for elastic properties from seismic data be-
ause elastic-property estimates are often an in-
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ermediate step in inferring reservoir properties in seismic reservoir
haracterization. The band-limited nature of the seismic data, to-
ether with observational and modeling uncertainties, gives rise to
he inherent nonuniqueness of the seismic-inversion-for-elastic-
roperties problem. In other words, many configuration combina-
ions of elastic earth models fit the data equally well.

The inversion of seismic data for elastic properties can be posed as
deterministic problem or as a stochastic problem, i.e., model ran-
om parameters characterized by probability densities. Russell
1988� summarizes two of the widely used deterministic or optimi-
ation-based methods of seismic inversion for elastic properties:
parse-spike techniques and model-based inversion. Sparse-spike
echniques deconvolve the seismic trace under sparseness assump-
ions of the reflectivity series, an idea initially proposed by Olden-
urg et al. �1983�. First, reflectivities are obtained; then, impedances
re computed, including the missing low frequencies, usually from
ell data, seismic-velocity analysis, or a kriging estimate of the low-

requency trend. In model-based methods �Russell and Hampson,
991�, starting from a given initial model, the inversion algorithm
erturbs the model until some minimization criteria are satisfied.
he objective function, or the function to be minimized, is usually a
ifference between the observed and modeled data. However, addi-
ional regularization terms are usually included in the objective
unction to restrict possible solutions to those that satisfy additional
riteria, such as a fixed mean layer thickness, smoothness, or a con-
ition of lateral continuity.

Gradient-based methods attempt to solve nonlinear minimization
roblems by linearizing around an initial solution. Iterative linear
teps are taken to update the current model based on gradient infor-
ation. The iteration stops when errors in the updates are below

ome tolerance. Gradient methods such as steepest descent and con-
ugate gradients or Hessian methods such as Newton’s can be used to

inimize the objective function; they are sensitive to the choice of
he starting point and can easily get trapped in local mimima.

Cooke and Schneider �1983� describe generalized linear least-
quares inversion for impedances from normal-incidence seismic

Spatial model for
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75A168 Bosch et al.
races, but Mora �1987� presents a preconditioned conjugate-gradi-
nt algorithm for nonlinear least-squares inversion of multioffset
ull-waveform seismic data. Sen and Stoffa �1991� and Ma �2002�
se simulated annealing to tackle the nonlinear optimization prob-
em. The monograph by Sen and Stoffa �1995� describes many of the

inimization techniques used in seismic inversion, both descent
ethods, and global optimization techniques such as simulated an-

ealing and genetic algorithms. Mallick �1995, 1999� describes
ome practical aspects of using genetic algorithms for prestack
aveform inversion.
The Bayesian formulation presented in equation 1 can be very dif-

cult to solve in a closed analytical form. Under appropriate as-
umptions, equation 1 leads to particular types of problems with
ell-established methods for finding the solutions. For example, as
arantola �1987� shows, by assuming Gaussian distributions for the
rior probability density and for the errors in the data and by using a
inear forward-model operator, equation 1 yields a posterior proba-
ility density that is also Gaussian. In this situation, the mean and co-
ariance of the posterior probability density are given by the solution
f a least-squares problem; that is, means and covariances, and
ence the complete posterior distribution, are defined analytically.A
ess strong assumption about the forward-model operator is that it is
mooth enough to be approximated locally by a multivariate linear
r quadratic function. In this approach �also in Tarantola, 1987�,
ommon nonlinear least-squares methods such as Newton’s can be
sed iteratively to search for the maximum posterior probability
odel configuration at the closest mode. However, convergence to

he global maximum is not ensured unless the posterior probability
ensity is monomodal. A posterior covariance can be calculated at
he local maximum, which only accounts for the uncertainty of the
orresponding mode under the local quadratic approximation.

Diverse methods such as simulated annealing can be used to over-
ome the problem of multimodality. However, without assumptions
uch as the ones just mentioned, the general solution to the inverse
roblem consists of enough samples from the posterior probability
ensity that can be obtained using Monte Carlo �Tarantola, 1987� or
equential simulation methods. Lörtzer and Berkhout �1992� per-
orm a linearized Bayesian inversion of seismic amplitudes based on
single-interface theory. Gouveia and Scales �1998� define a Baye-

ian nonlinear model and estimate the maximum a posteriori elastic
arameters. Buland and Omre �2003� and Buland et al. �2003� have
eveloped a linearized BayesianAVO inversion method, accounting
or the wavelet using a convolution model. They obtain explicit ana-
ytical expressions for the posterior density of the elastic parameters,
roviding a computationally fast method. Grana and Della Rossa
2010� use Gaussian-mixture models, thus avoiding the restrictions
f a Gaussian assumption and taking advantage of analytical expres-
ions available for conditional distributions of Gaussian-mixture
odels.

ROCK PHYSICS

Rock physics is included in quantitative seismic interpretation as
cascaded step after seismic inversion or within a joint seismic/

etrophysical formulation, linking elastic parameters and reservoir
roperties. Theoretical and empirical rock-physics models typically
escribe the behavior of elastic moduli as a function of factors such
s mineralogy, porosity, pore type, pore fluids, clay content, sorting,
ementation, and stress. We do not review specific rock-physics
odels, so the reader is referred to review papers such as Berryman
Downloaded 18 Sep 2010 to 190.103.42.56. Redistribution subject to 
1995� and Avseth et al. �2010�, the collection of papers edited by
ang and Nur �1992, 2000�, and rock-physics books �e.g., Guéguen

nd Palciauskas, 1994; Schön, 1996; Mavko et al., 2009�.
Ideally, the values of the elastic properties derived from inverting

eismic data are assigned to a specific depth or time zone; therefore,
he transformation from elastic to reservoir properties may be done
oint by point. However, application of rock-physics models de-
ived at the log or core scale to band-limited seismic inversion re-
ults can be problematic because the inversion results represent seis-
ic-scale aggregate lithologies �Doyen, 2007�. This problem can be

reated with appropriate scale transforms for the reservoir and elastic
arameters.

Calibration of the rock-physics model using log data and seismic
ynthetic modeling is necessary. With enough training data, varia-
ions of linear or nonlinear regression, geostatistical, and neural-net-
ork techniques can be used to empirically convert elastic proper-

ies to reservoir properties without understanding the physical bases
f the transformations. However, applying any statistical correlation
ithout regard to the underlying physics can easily yield erroneous

esults �e.g., Hirsche et al., 1998�. Furthermore, it is very difficult to
upport predictions of reservoir properties that are not sampled by
ell logs or training data, a common situation in frontier explora-

ion. Rigorously, the interpretation is limited to the training data used
o derive the statistical correlation. Here, rock-physics models play a
ritical role in deriving correlations between elastic and reservoir
roperties for scenarios not sampled in the training data.

Including rock physics not only validates the transformation to
eservoir properties but also makes it possible to enhance well-log or
raining data based on geologic processes �e.g., Avseth et al., 2005�.
n particular, Mukerji et al. �1998�, Mukerji et al. �2001a�, and Muk-
rji et al. �2001b� formally introduce statistical rock-physics meth-
ds as a way to combine rock physics, information theory, and geo-
tatistics in quantitative reservoir characterization. Earlier pioneer-
ng workers who combine rock-physics models with geostatistical
lgorithms to infer reservoir properties include Doyen �1988�, Lucet
nd Mavko �1991�, and Doyen and Guidish �1992�.

Statistical rock physics combines theoretical and empirical rock-
hysics models with statistical pattern-recognition techniques to in-
erpret elastic properties obtained from seismic inversion and to
uantify interpretation uncertainty. Statistical rock physics is also
seful for identifying additional information that may help reduce
nterpretation uncertainties. The statistical rock-physics methodolo-
y can be divided into four broad steps.

First, well-log data are analyzed to obtain facies definition. This is
one after appropriate corrections, including fluid substitution and
hear-velocity estimation when required. Knowledge of background
eology as well as core and thin-section information �when avail-
ble� also play an important part in this step. For each facies, basic
ock-physics relations, such as velocity/porosity and P-/S-wave ve-
ocity VP-VS, are defined and modeled using appropriate theoretical
r empirical models. We use the term facies for categorical groups

not necessarily only by lithology type but also by some property
r collection of properties, as, for example, a combination of litholo-
y and pore fluids. Brine sands and oil sands are considered two dif-
erent facies or categories. This general procedure also applies for
haracterizing continuous reservoir properties such as porosity and
et to gross.

This first step is followed by Monte Carlo simulation of seismic
ock properties �VP, VS, and density� and computations of the facies-
ependent statistical probability density functions �PDFs� for seis-
SEG license or copyright; see Terms of Use at http://segdl.org/
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Seismic inversion for reservoir properties 75A169
ic attributes of interest �Figure 2�. A key feature is the use of rock-
hysics modeling to extend the PDFs to situations that are of interest
ut were not encountered in the wells �e.g., different fluid satura-
ions, presence of fractures, different levels of diagenesis or cemen-
ation, different depths�. For example, in wells with missing VS, VS

rediction must be conducted using VP-VS relations appropriate for
he facies; Gassmann’s equations can be used for fluid substitution;
nd lithology substitution can be done using various rock models of
ementation, sorting, and clay content �e.g., Avseth et al., 2005;
avko et al., 2009�. The extended PDFs are the derived distribu-

ions, conditioned to each facies class: the probability of attributes
iven the facies, or P�attributes � facies�. Using the derived PDFs of
eismic attributes, feasibility evaluations are made about which set
f seismic attributes contains the most information for the problem.
iscriminating lithologies may require a different set of attributes

han, say, discriminating fractured versus unfractured reservoir
ones. An evaluation of the well-log-based seismic-attribute PDFs
an guide the choice of attributes to be extracted from the seismic
ata.

For the third step in the work flow, the elastic properties �or related
ttributes� from seismic inversion are used, in a statistical classifica-
ion technique, to classify the voxels within the seismic-attribute
ube. Calibrating the attributes with the probability distributions de-
ned at well locations allows us to obtain a measure of the probabili-

y of occurrence of each facies. This can be done using Bayes’ theo-
em to get the posterior probability of facies given the attributes, or
�facies �attributes�, which is proportional to the product of the like-

ihood P�attributes � facies� obtained in step 2 and the prior probabil-
ty of facies, or P�facies�, obtained from geology. Various standard
tatistical validation tests can be performed to obtain a measure of
he classification success. Neural networks can also be used for this
lassification estimation of the probability of facies given attributes
e.g., Caers and Ma, 2002�. Figure 3 shows an example of using
ayesian classification to predict posterior probabilities of oil sands.
ear- and far-offset impedances obtained from a deterministic in-
ersion were used as input attributes.

The fourth step in the complete formulation of statistical rock
hysics �Mukerji et al., 2001a; Avseth et al., 2005� includes applying
eostatistical stochastic simulation for imposing spatial correlation.
he probabilities obtained in step 3 from classifying seismic at-

ributes depend on the local voxel values of the seismic attributes
nd are not conditioned to the neighboring spatially correlated val-
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igure 2. Isosurfaces of trivariate nonparametric PDFs for VP, VS,
nd density for brine sands �blue� and gas sands �red�. From Avseth
t al., 2005.
Downloaded 18 Sep 2010 to 190.103.42.56. Redistribution subject to 
es. Hence, this final geostatistical step may be used to update the
eismically derived probabilities by taking into account geologically
easonable spatial correlation and by conditioning to the facies and
uids observed at the well locations.
The general work flow is applicable to categorical variables such

s lithofacies or for characterizing continuous properties such as po-
osity and net to gross. The work of Saltzer et al. �2005�, Bachrach
2006�, and Sengupta and Bachrach �2007� are examples of the se-
uential or cascaded work flow, using deterministic inversion fol-
owed by statistical rock-physics methods to infer reservoir proper-
ies such as shale fraction, porosity, and saturations. Similarly, Sams
nd Saussus �2007� use a deterministic impedance inversion fol-
owed by Bayesian rock-physics transforms. Grana and Della Rossa
2010� use a linearized Bayesian inversion to estimate P- and
-wave impedances, followed by statistical rock-physics modeling

n a Bayesian framework to calculate the conditional probabilities of
etrophysical variables �porosity, water saturation, and clay content�
nd lithofluid classes �oil-sand, water-sand, and shale� conditioned
o the seismic impedances.

These procedures apply in a similar manner for the joint seismic
nd petrophysical inversion work flow, with a variation in step 3. In-
tead of a cascaded estimate of elastic and reservoir parameters, they
re jointly estimated, honoring within uncertainties the seismic re-
ection data and the petrophysical relationships. Examples of a joint
pproach include work by Leguijt �2001, 2009�, Bosch �2004�, Eids-
ik et al. �2004�, Gunning and Glinsky �2004�, Larsen et al. �2006�,
osch et al. �2007�, Spikes et al. �2007�, Buland et al. �2008�,
onzález et al. �2008�, Bosch et al. �2009a�, and Bosch et al.

2009b�.
Figures 4 and 5 illustrate the joint approach for estimating total

orosity and acoustic impedance in the setting of clastic and carbon-
te sequences at a heavy-oil producing field �from Bosch et al.,
009a�. Figure 4 shows total porosity versus acoustic impedance
rossplots, derived from well logs and upscaled to the seismic reso-
ution. As shown in the figure, the acoustic impedance is well corre-
ated to the total porosity in this area.Apetrophysical model calibrat-
d to the data is also shown, which is used to define the conditional
etrophysical density in the expression 3. Thanks to this petrophysi-
al coupling, the porosity and impedance are estimated jointly with
he petrophysical seismic inversion technique, as shown in Figure 5.

igure 3. Result of Bayesian classification of near- and far-offset im-
edances using a statistical rock-physics work flow. Isoprobability
urface shows 75% probability of oil-sand occurrence in a North Sea
eservoir. Vertical extent is about 100 m; lateral extent is 12 km
long the long dimension. From Avseth et al., 2005.
SEG license or copyright; see Terms of Use at http://segdl.org/
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n this area, shale layers are characterized by low acoustic imped-
nce �and corresponding large total porosity�, which can be identi-
ed from the impedance and porosity sections. The high-acoustic-
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igure 4. Crossplot of well-log properties rescaled at seismic resolu-
ion: acoustic impedance versus total porosity. Colors indicate water
aturation. The continuous black line shows the petrophysical trans-
orm calibrated to the well-log data. The gray band indicates plus
nd minus one standard acoustic impedance deviation from the
ransform, as used in the petrophysical statistical model. Adapted
rom Bosch et al., 2009b.
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mpedance �and small total porosity� layers correspond to carbonate
nd sand, which cannot be discriminated in this area by their P-wave
mpedance alone. Major interpreted strata correlating with well in-
ormation are indicated in the figure.

Depending on the stage of the reservoir’s exploration, develop-
ent, and production cycles, the steps outlined above may be modi-
ed. Not all of the steps may be carried out in the initial exploration
tages, where there is little or no well data. In the exploration stage,
he PDFs of just a few basic facies categories �say, shale, oil sand,
rine sand� can be estimated from wells and a quick classification
one using seismic attributes derived at a few locations, e.g., a few
VO intercepts and gradients derived from a handful of common-
epth-point �CDP� gathers. In some cases at the early exploration
tage, there may be no wells, and the PDFs of rock properties may be
ased on rock-physics models for analogous data from regions of
imilar geologic history. In the development stage, based on more
xtensive well data, additional facies categories may be defined
e.g., shale, unconsolidated sand, cemented sand�. Seismic attributes
xtracted after careful inversions over a full 3D volume may be used
n the classification.

ADDING SPATIAL
CONSTRAINTS

Reservoir characterization requires inte-
grating different kinds of data while incorpo-
rating the spatial correlation of reservoir het-
erogeneities. One objective is to give priority
to solutions or configurations of the model pa-
rameters consistent with particular spatial cor-
relations and crosscorrelations, commonly
characterized from geologic and well-log in-
formation. A second objective is to combine
information from the well-log-based proper-
ties with the information of the seismic-de-
rived property estimates so that the resulting
field honors the well-log data. A third objec-
tive is to incorporate subseismic-scale hetero-
geneities with spatial correlations consistent
with well and geologic information.

Conditioning the inversion to well-log data
can be done directly in the seismic scale by
transforming well-log-derived properties to
the seismic model support with the appropri-
ate change of scale expressions. In this case,
however, there is no improvement of vertical
resolution because of the combination of well
and seismic information. The typical geo-
statistical approach consists of defining a
property model at the subseismic scale, where
properties are to be estimated or jointly simu-
lated, and conditioning to the seismic and
well-log data �see Haas and Dubrule �1994�;
González et al. �2008�; Bosch et al. �2009b��.
In this case, an improvement of vertical reso-
lution in the simulations is achieved at dis-
tances around the range of correlation with the
wells. However, this approach requires that
the forward model include the appropriate up-
scaling — directly, using a full-physics wave-
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Seismic inversion for reservoir properties 75A171
ropagation model, or approximately, using a dual-scale model con-
isting of an upscaling function followed by a simplified wave-prop-
gation model. Figure 6 describes the model parameters and rela-
ions for different types of geostatistical seismic inversion condi-
ioned to well-log data.

Spatial variability is typically modeled using various geostatisti-
al methods. Some references on general geostatistical methods are
eutsch and Journel �1998�, Dubrule �2003�, and Caers �2005�. In

he sequential work flow of seismic inversion for reservoir proper-
ies, geostatistical methods can be used in step 1 �seismic inversion
or reservoir properties�, in step 2 �transformation of elastic proper-
ies to reservoir properties�, or in a final step after estimating elastic
nd reservoir properties. In the latter approach, the localized well in-
ormation and the 3D properties estimated from the seismic data are
ombined for estimating the property fields at subseismic scale.
okriging is a classic geostatistical method that has been used for

his purpose. However, kriging techniques are for point estimation
nd do not honor true spatial variability. Geostatistical cosimulation
s essential to imprint true spatial variability to the property fields.
xamples are given by Doyen �1988�, Lucet and Mavko �1991�,
oyen and Guidish �1992�, Zhu and Journel �1993�, and Mukerji et

l. �1998�. Mukerji et al. �2001a� use near- and far-offset seismic
tacks to invert deterministically for the near- and far-offset imped-
nces. These are input into a Bayesian classification scheme using
tatistical rock-physics models to obtain proba-
ility maps of different lithofluid classes. These
robabilities are then updated using a geostatisti-
al Markov-Bayes indicator cosimulation to get
he posterior probabilities and multiple realiza-
ions of lithofluid categories.

However, in geostatistical inversion for elastic
roperties �Bortoli et al., 1993; Haas and Du-
rule, 1994�, geostatistical simulations are more
losely integrated with the seismic inversion at
he initial stage itself. The original methodology
f Bortoli et al. �1993� and of Haas and Dubrule
1994� consists of local trace-by-trace optimiza-
ion combined with sequential geostatistical sam-
ling based on the horizontal and vertical vari-
gram �Rowbotham et al., 1998�. The variogram
tatistically quantifies the spatial correlation of
he impedance. Each trace location is visited in a
andom path.At each location, a number of possi-
le vertical seismic impedance logs are simulated
sing sequential Gaussian simulation �Deutsch
nd Journel, 1998�. The simulation is constrained
y the existing impedances at the well locations
nd by the vertical and horizontal variograms.
he synthetic seismograms computed from the
imulated impedance logs using a 1D convolu-
ion model are compared with the actual seismic
ata. The simulated log that gives the best fit to
he seismic data is retained and used as a con-
traint for simulating vertical logs at the next ran-
om location. The seismic data constrain the in-
ersion within the seismic bandwidth, but the
igher spatial frequencies are stochastically con-
trained by the variograms obtained from well
ogs and the hard data at the wells.

Debeye et al. �1996� present a stochastic inver-
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ion scheme that is equivalent to the Haas and Dubrule method with
he addition of a simulated annealing component. The work of Sams
t al. �1999� shows a practical application of the Debeye et al. meth-
d to generate multiple 3D realizations of lithology and porosity
onsistent with geology, petrophysics, and seismic data in a central
umatra basin mature reservoir. Kane et al. �1999� present a similar
eostatistical approach, adding a simple but fast and effective Monte
arlo method to generate solutions. As in the Haas and Dubrule

1994� method, the Debeye et al. �1996�, Sams et al. �1999�, and
ane et al. �1999� methods as originally published are for inverting a

ingle stacked seismic volume, although the concepts can be extend-
d to multiple partial stack volumes by jointly simulating P- and
-impedance logs at each location.
Francis �2005, 2006a� proposes an alternative geostatistical seis-
ic-inversion method that exploits the advantage of the fast Fourier

ransform-based spectral simulation to generate impedance realiza-
ions, conditional to well data, much faster than sequential simula-
ion techniques. In Francis’ method, conditioning to seismic data is
ccomplished by applying the generalized linear inversion algo-
ithm to update the initial geostatistical realizations of impedance.
his method can be used for a joint inversion of multiple seismic
olumes, such as near- and far-offset volumes or time-lapse studies,
y generating coupled initial conditional realizations. Escobar et al.
2006� have developed a variation of the geostatistical inversion al-
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75A172 Bosch et al.
orithm. By assuming Gaussian priors and likelihoods and by linear-
zing the forward model, they can approximately decouple the high-
imensional posterior distribution as a product of Gaussian distribu-
ions. Then they use sequential Gaussian simulation to draw from the
osterior distribution of elastic properties.

Geostatistical seismic inversion schemes have implementation
equirements that demand careful consideration.An important one is
ime-to-depth conversion to relate well-log-based properties to seis-

ic traveltime. A second, equally important consideration is the
eed to define carefully the directions to drive the lateral correlation.
n some geostatistical models, only the vertical variability is charac-
erized and used to constrain the estimated property fields, whereas
ifferent traces are considered spatially independent, with the lateral
ontinuity being implicit through the seismic data. The vertical vari-
gram is commonly based on the characterization of the well-log-
erived properties.

In more complete formulations, and particularly for conditioning
he property fields to well logs, the properties are explicitly modeled
s laterally related. The property fields estimated from the seismic
nversion or the seismic data can be used to characterize the lateral
ariability of the strata; other approaches are to adopt the vertical
ariogram with a range extended with the typical aspect ratio of the
trata or an assumed variogram model with a range related to the typ-
cal strata correlation length. In general, lateral correlation should be
ased on a sufficiently fine and well-traced network of horizons, sur-
aces, or cells that follow the strata. A third issue is the separation of
omains by faults, unconformities, and discordances so that spatial
orrelation is zero across these geologic discontinuities. A thorough
ntegration of well-log data with seismic information requires, in
eneral, a detailed interpreted model.

In the joint work flow discussed earlier, geostatistical seismic in-
ersion can incorporate spatial correlation within the steps of the in-
ersion itself and can be used to draw geologically consistent real-
zations from the prior P�facies�. Then a numerical simulation algo-
ithm such as Markov-chain Monte Carlo can be used to draw real-
zations from the posterior P�facies �attributes� using the likelihood
�attributes � facies�. This likelihood involves the rock-physics
odel relating facies to elastic properties and the wave-propagation

orward model relating elastic properties to seismic attributes.Alter-
atively, under a deterministic approach, a consistent optimal con-
guration can be estimated to honor within uncertainties the seismic
ata, the petrophysical relationships, and the spatial model con-
traints.

Eidsvik et al. �2004� formulate the inversion problem as a simulta-
eous inversion in terms of a Bayesian network model. They incor-
orate lateral spatial continuity in the prior distribution of reservoir
roperties via a Markov random-field model. Larsen et al. �2006� in-
orporate vertical spatial correlation using a Markov-chain model.
xamples of application of the geostatistical inversion method to

eservoir characterization include Torres-Verdin et al. �1999� and
ontreras et al. �2005�.
Figure 7 illustrates in a didactic manner the combination of well-

og and seismic data for property estimation in the setting of a petro-
hysical inversion in the acoustic domain. In this case of a gas reser-
oir, the seismic data are modeled via the acoustic impedance, total
orosity, and water-saturation fields. The impedance is linked to the
eismic data by a normal-incidence reflectivity and convolutional
odel and to the porosity and saturation by a petrophysical model

alibrated to well-log data. Conditioning well W1 is at one extreme
f the section; well W2 is a control well to validate the results. The
Downloaded 18 Sep 2010 to 190.103.42.56. Redistribution subject to 
rst column of the figure shows a geostatistical estimation �kriging�
ased on well W1’s properties and spatial correlation directions that
ollow a reference reflector in the reservoir. The second column
hows a petrophysical inversion with no well-log conditioning. The
hird column shows the petrophysical inversion conditioned by well

1. The result of the third column capitalizes on information from
he two sources, well logs, and seismic data, showing improved ver-
ical resolution and well W2 correlations as compared with the un-
onditioned inversion.

Many of the geostatistical algorithms used in geostatistical inver-
ion methods rely on two-point statistics �variograms or spatial co-
ariance� to capture geologic continuity. However, the variogram
oes not incorporate enough information to model complex geolog-
c structures or curvilinear features. To get over this limitation of the
wo-point geostatistics, Guardiano and Srivastava �1993� present
he ideas of training images and multipoint statistics �MPS� for geo-
tatistical simulations.Atraining image can be defined as a represen-
ation of the expected type of geologic variability in the area of study.
t reflects the prior geologic knowledge, including the type of fea-
ures or patterns expected, but it does not need to be conditioned to
ny hard data. All current MPS algorithms �e.g., Strebelle and Jour-
el, 2001� extract the MPS, i.e., probability of a state at a particular
osition given the states of multiple neighbors, from a training im-
ge.

González et al. �2008� introduce one of the first attempts to use
PS in the seismic-inversion context to obtain reservoir properties

irectly. Their method combines rock physics and MPS to generate
ultiple realizations of reservoir facies and saturations, conditioned

o seismic and well data. The inversion technique is based on the for-
ulation of the inverse problem as an inference problem, with MPS

o characterize the geologic prior information and conditional rock
hysics to characterize the links between reservoir properties and
lastic properties. The González et al. �2008� inversion method pro-
ides multiple realizations, all consistent with the expected geology
nd well-log and seismic data, that honor local rock-physics trans-
ormations; yet it does not rigorously sample the solution space or
osterior PDF. Their approach combines elements of sampling from
onditional probabilities with elements of optimization, providing
olutions that limit all possible geostatistical realizations to the ones
hat can reproduce the available geophysical observations within a
ertain range of tolerance, given conditional rock-physics distribu-
ions.

In González et al.’s �2008� work, rock-physics principles are in-
orporated at the beginning of the inversion process, establishing the
inks between reservoir properties �e.g., lithology, saturation� and
hysical quantities �e.g., impedance, density�. It also uses the con-
ept of derived distributions from the statistical rock-physics work
ow. Hence, it is possible to predict reservoir conditions not sampled
y well-log data, and the consistency between reservoir and elastic
roperties in solutions is guaranteed. González et al.’s implementa-
ion uses a pattern-based MPS algorithm; however, it can be changed
y any multipoint geostatistical technique without modifying the
ore structure of the entire inversion algorithm. Still, there are many
ngoing research efforts for developing MPS algorithms capable of
andling more realistic training images and for the practical aspects
f defining and selecting appropriate training images based on geol-
gy.
SEG license or copyright; see Terms of Use at http://segdl.org/
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Seismic inversion for reservoir properties 75A173
DISCUSSION

Characterization of reservoir properties by combining seismic in-
ersion, rock physics, and geostatistics depends on the quality of the
ata, the characteristics of the reservoir, and the methods applied.
he elastic properties of rocks are influenced by pore fluids, com-
action, cementation, and other factors, and relationships between
he lithology, pore fluids, and seismic parameters depend on the spe-
ific reservoir setting. In many situations, lithological discrimina-
ion is an achievable goal, especially when P- and S-wave attributes
re combined within a well-calibrated elastic and rock-physics mod-
l. Effects of fluids can cause ambiguities in lithology discrimina-
ion. The effects of pore fluids on the elastic properties of the rock de-
end not only on fluid properties such as density and compressibility
ut also on the scales of saturations of the pore fluids as well as the
ore compliance of the dry rock. Rocks with elastically compliant
ore space �e.g., unconsolidated or poorly consolidated sands� are
ore sensitive to fluid changes than rocks with elastically stiff pores
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igure 7. Matrix of plots corresponding to results of the inversion me
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etrophysical inversion conditioned to well W1 data for �g� acoustic i
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e.g., well-cemented, well-compacted, unfractured sandstones�.
iscriminating hydrocarbon from formation water is easier when
uid density and compressibility differences are larger. Hence, shal-

ow reservoirs with elastically compliant rocks and light oil or gas
ontribute to positive and easy fluid discrimination.

The results of a reservoir-characterization study depend on meth-
ds applied. Different workers discuss the main differences between
eterministic and stochastic seismic inversion methods �e.g., Helge-
en et al., 2000; Sancevero et al., 2005; Sams and Saussus, 2008;
oyen and Doyen, 2009�. Francis �2006a, 2006b� presents a partic-

larly nice comparison. In summary, deterministic methods provide
single, local smooth estimate of the subsurface elastic properties
ith inaccurate assessment of uncertainty. This single, smooth esti-
ate commonly leads to biased estimate of volumes and connectivi-

y. On the other hand, stochastic or Monte Carlo inversion methods
rovide multiple solutions, all conditional to the seismic data and
ell observations, allowing better estimates of volumes and connec-
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ivity along with an appropriate and crucially important uncertainty
ssessment. Geostatistical inversion for lithofacies, by including re-
listic geologic spatial models, can better reproduce the shapes of
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igure 8. Conventional deterministic inversion compared with in-
ersion incorporating multipoint geostatistics. �a� Input true model,
howing spatial distributions of lithology categories �sand and
hale�, corresponding compressional velocity VP and density, and
P-density relation for the two lithologies. �b� Input seismic data for

he inversion, computed from the true model using the invariant-em-
edding reflectivity method �Kennett, 1974� with a 15-Hz Ricker
avelet. �c�Acoustic-impedance section obtained from seismic data

n �b� by using a commercially available implementation of the
parse-spike inversion algorithm. �d� Probability �E-type� for sand
roups, computed by averaging more than 30 realizations obtained
rom an MPS-based inversion �González et al., 2008� of the same
eismic data. By including geologically realistic spatial models,
eostatistical inversion can better reproduce the channels shapes,
hich are smoothed in conventional deterministic seismic inver-

ion.
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eobodies such as channels and lobes, which are smoothed out in a
onventional deterministic seismic inversion �Figure 8�.

Whether deterministic or stochastic, most seismic-inversion work
ows require forward seismic modeling. The most common ap-
roach has been based on the convolutional model. Although this
as been a useful workhorse and has given considerable mileage, we
oresee future improvements with wave-equation-based 3D model-
ng. Presently, CDP modeling is supported by previous prestack
eismic migration; it is likely that this process will be accounted for
ith 3D forward modeling because it is in the general formulation of

he full-waveform inversion techniques. Upgrading the isotropic
lastic model with more complete mechanical medium models �an-
sotropic, viscoelastic, poroelastic� would be justified in cases with
ood-quality data.

Regardless of the potential advantages of Monte Carlo inversion
ethods, most of the seismic inversion projects use deterministic al-

orithms �Doyen, 2007�. Deterministic inversion methods are easier
o apply because of fewer computations involved, ease and avail-
bility of software and existing expertise, and therefore less effort
nd time required to generate results �Sams and Saussus, 2008�. On
he other hand, partly because of limitations of accessible computer
ardware and software in the past, only in recent years have com-
ercial tools and workflows been available to overcome the difficul-

ies of handling and interpreting the multiple realizations of any geo-
tatistical inversion scheme.

Additionally, as Doyen �2007� points out, there have been some
isconceptions about the resolution of the results obtained with

eostatistical inversion methods. Monte Carlo inversions can pro-
ide solutions at any desired sampling; however, that does not mean
he seismic resolution is increased. Only within the range of well-log
nformation is the vertical resolution of the model �not the seismic
ata� increased by spatial conditioning of the model properties to the
ne-scale, log-derived properties. In geostatistical inversion meth-
ds, the temporal frequency content outside the seismic bandwidth
s simulated, in the geostatistical sense, based on the spatial correla-
ion model selected and maintaining consistency with well observa-
ions. In fact, as suggested, the way geostatistical inversion assesses
ncertainties resulting from the band-limited nature of the seismic
ata is by generating multiple full-bandwidth impedance or elastic-
roperty models consistent with the seismic data, spatial correla-
ions, and well observations.

Finally, a word of caution about using multiple geostatistical real-
zations as a measure of uncertainty �Dubrule et al., 1996; Dubrule,
003�. It has been argued �Massonnat, 2000� that uncertainties asso-
iated with different geologic scenarios are far more significant than
hose captured by multiple realizations under a single scenario. Dif-
erent scenarios obtained from different plausible geologic concepts
bout the depositional system must be combined with geostatistical
imulations for each scenario. Lia et al. �1997�, Corre et al. �2000�,
harles et al. �2001�, and Dubrule and Damsleth �2001�, among oth-
rs, discuss approaches for quantifying uncertainty in reservoir char-
cterization by combining geologic scenarios with geostatistical re-
lizations. Some future directions of research could include stronger
oupling of geology with quantitative reservoir models, use of geo-
tatistical inversion for prestack seismic data, and tighter integration
f seismic reservoir characterization with matching production his-
ory and making decisions related to reservoir management. Assess-
ng uncertainty in and of itself may have little value unless it is linked
o specific reservoir decisions.
SEG license or copyright; see Terms of Use at http://segdl.org/
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CONCLUSION

We have reviewed seismic-inversion schemes �deterministic and
tochastic� that incorporate rock-physics information and geostatis-
ical models of spatial continuity. Seismic inversion by itself is a suc-
essful technique to predict elastic properties from seismic data.
owever, reservoir characterization requires techniques that go be-
ond inverting for elastic parameters �e.g., impedances, elastic mod-
li� and that try to infer reservoir properties of interest, such as lithol-
gy, porosity, and fluid saturation. Empirical or theoretical statistical
ock physics provides information serving as the bridge between
lastic and reservoir properties, whereas geostatistical methods im-
ose on the estimated or simulated property fields the appropriate
patial variability and coherence with localized information, typi-
ally from well logs. The most general formulation is given in terms
f Bayesian inference, i.e., modeling information by probability
ensities in parameter spaces and integrating the information to pro-
uce a combined posterior probability density.

The inference problem can be separated into its information com-
onents — seismic data, rock physics, and geostatistics — and
inked via various cascaded work flows or formulated jointly. Once
he formulation and relevant parameters are chosen according to the
ase, the solution methods can be grouped into two major approach-
s: optimization and sampling. The first one uses algorithms that
earch for the maximum of the combined probability, commonly at a
ocal mode; the second uses techniques that produce an ensemble of
amples �realizations� from the combined probability density to pro-
ide marginal parameter estimates and probabilistic interpretations.
he technique, in various possible work flows, is a major contribu-

ion to reservoir characterization and should be considered part of an
lmost standard and essential work flow after seismic processing.
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