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Seismic inversion for reservoir properties combining
statistical rock physics and geostatistics: A review

Miguel Bosch', Tapan Mukeriji?, and Ezequiel F. Gonzalez®

ABSTRACT

There are various approaches for quantitative estimation
of reservoir properties from seismic inversion. A general
Bayesian formulation for the inverse problem can be imple-
mented in two different work flows. In the sequential ap-
proach, first seismic data are inverted, deterministically or
stochastically, into elastic properties; then rock-physics mod-
els transform those elastic properties to the reservoir property
of interest. The joint or simultaneous work flow accounts for
the elastic parameters and the reservoir properties, often in a
Bayesian formulation, guaranteeing consistency between the
elastic and reservoir properties. Rock physics plays the im-
portant role of linking elastic parameters such as impedances
and velocities to reservoir properties of interest such as lithol-
ogies, porosity, and pore fluids. Geostatistical methods help
add constraints of spatial correlation, conditioning to differ-
ent kinds of data and incorporating subseismic scales of
heterogeneities.

INTRODUCTION

This paper reviews seismic inversion schemes (deterministic and
stochastic) that incorporate rock-physics information and geostatis-
tical models of spatial continuity. We focus on techniques that go be-
yond inverting for the elastic parameters (e.g., impedances, elastic
moduli) and try to infer reservoir properties of interest, such as
lithologies, porosities, and fluid saturations. Doyen’s book (2007) is
an excellent, easy-to-read summary of many of the methods de-
scribed.

The transformation of any geophysical data into physical proper-
ties of the earth such as elastic or electrical parameters can be posed
as an inverse problem. General inverse theory is a mathematically

rich discipline, and many excellent books on geophysical inverse
theory exist (e.g., Menke, 1984; Tarantola, 1987; Parker, 1994; Sen
and Stoffa, 1995; Oliver et al., 2008). However, the goal of using
geophysical methods for reservoir characterization usually goes be-
yond estimating the physical quantities to which a remote-sensing
experiment responds. Rather, the final goal usually is to infer reser-
voir properties that include characteristics of the rocks (lithology,
fluid, porosity) and the regime of physical conditions (pressure, tem-
perature) to which they are subjected.

Seismic-reflection data are used in reservoir characterization not
only for obtaining a geometric description of the main subsurface
structures but also for estimating properties such as lithologies and
fluids. However, transforming seismic data to reservoir properties is
an inverse problem with a nonunique solution. Even for noise-free
data, the limited frequency of recorded seismic waves makes the so-
lution nonunique. The inversion of seismic data for reservoir proper-
ties is more complicated in practice because of (1) the ever-present
noise in the data, (2) the forward-modeling simplifications needed to
obtain solutions in a reasonable time, and (3) the uncertainties in
well-to-seismic ties (depth-to-time conversion), in estimating a rep-
resentative wavelet, and in the links between reservoir and elastic
properties.

We focus our review on methods of seismic inversion for reser-
voir characterization that incorporate geology, rock-physics or
petrophysical knowledge, and geostatistics. A combination of elas-
tic-property estimates from seismic inversion and rock physics or
petrophysics for predicting reservoir properties is a key and classical
procedure in reservoir characterization. Recent developments in-
clude rock-physics relations as constraints to the inversion. Geosta-
tistics includes the constraints imposed by spatial correlation, repre-
sented by variograms, Markov random-field models, or multipoint
spatial statistics captured in training images. Geostatistical methods
simulate small-scale variability not captured in seismic data because
of limited resolution. Geostatistical models can be used at the begin-
ning of the stochastic inversion to provide geologically consistent
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prior models or after extracting and classifying seismic attributes to
impart realistic geologic patterns and spatial correlation.

Before describing approaches in quantitative seismic interpreta-
tion, we discuss some of the important reasons for quantifying un-
certainty of the interpretation.

WHY QUANTIFY UNCERTAINTY?

Subsurface-property estimation from remote geophysical mea-
surements is always subject to uncertainty because of many inevita-
ble difficulties and ambiguities in data acquisition, processing, and
interpretation. Most interpretation techniques give us some optimal
estimate of the quantity of interest. Obtaining the uncertainty of that
interpretation usually requires further work and hence comes at an
extra cost. So what extra benefits do we receive? Why care about
quantifying uncertainty? Indeed, why quantify uncertainty at all?

Uncertainty in assessing reservoir properties from seismic data
comes from several sources. One source of uncertainty is measure-
ment errors in the seismic and well-log data. In the case of seismic
information, the original data are processed to form seismic images
of the subsurface. Similarly, the original well measurements are pro-
cessed to calculate a series of medium properties. In both cases, the
data-processing stage involves uncertainty. Seismic modeling is
based on an approximate wave-propagation model for the medium,
such as the isotropic elastic model commonly used for inversion. In
addition, uncertainty is associated with the rock-physics transforms
from elastic properties to reservoir properties and scale issues.
Houck (2002) shows a formulation to account for geologic, interpre-
tation, and measurement uncertainties in a Bayesian framework to
interpret seismic amplitude-variation-with-offset (AVO) data for
reservoir properties. Quantitative seismic-interpretation schemes at-
tempt to account for different sources of uncertainties (or at least
parts of them) in different ways.

One fundamental reason for quantifying uncertainty stems from
our accountability as responsible scientists. We know that models
are approximate, data have errors, and rock properties are variable.
So as responsible scientists, we appropriately report error bars along
with interpretation results. Error bars lend credibility. A more practi-
cal reason for understanding uncertainty is for risk analysis and opti-
mal decision-making. Quantifying uncertainty helps us to estimate
our risk better and possibly to take steps to protect ourselves from
that risk. Uncertainty assessments are also useful in data integration
and in estimating the value of additional information for reducing
uncertainty. Complex interpretation processes such as reservoir
characterization usually require integrating different types of data
from different sources. Understanding the uncertainties associated
with the different data sets helps us to assign proper weights (and dis-
card unreliable data) before we combine them in the interpretational
model. Additional data (e.g., S-wave data in addition to P-wave seis-
mic data) may help to clarify ambiguities and reduce uncertainty —
but not always. Estimating the value of additional information re-
quires quantitative assessment of uncertainty.

SEISMIC DATA TO RESERVOIR PROPERTIES:
POSING THE PROBLEM

Any inversion problem can be posed as a Bayesian inference
problem, i.e., update the prior knowledge, accounting for observa-
tions (e.g., Tarantola, 1987, 2005; Duijndam, 1988a, 1988b; Ulrych
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et al., 2001). It can be expressed as Posterior = Constant X Prior
X Likelihood. Using symbols, it can be expressed as

O-post(m) = Cpprior(m)pdata(dobs - g(m))» (1)

where o ,(m) is the posterior probability density and p.(m) is
the a priori probability density. The value pg,.(dos — g(m)) is the
data-likelihood function; it depends on the observations d,,, and
their uncertainties, the forward-modeling operator g that maps the
model space into the data space, and the modeling uncertainties. In
equation 1, m specifies the earth model parameter configuration, and
¢ is a constant for normalizing the posterior probability density. The
forward operator may be a simple function with an analytic form, a
matrix operator, or, more generally, an operator or computational al-
gorithm with no simple analytic expression.

The general formulation in equation 1 accepts different types of
solution approaches. Two major lines are (1) to search the maximum
of the posterior probability density or (2) to produce samples from
the posterior probability density. The first category is commonly
called optimization, error minimization, or the deterministic ap-
proach. The second category is known as the stochastic, Monte Car-
lo, or sampling approach. The sampling approach is more general
because it assesses the marginal posterior probability density and not
just the maximum probability. However, the two approaches con-
duce to the same maximum probability estimate if the same informa-
tion, data, and physics are used.

The solutions of an inverse problem are the set of earth-model
configurations that, when forward modeled into synthetic data,
match the real data within some tolerance. Specifically, in seismic
inversion, we invert for models of elastic properties: P-wave imped-
ance, S-wave impedance (or velocities), and density. However, for
reservoir characterization, these realizations of elastic parameters
must be transformed to useful reservoir properties such as litholo-
gies, porosities, and saturations. When the model parameterization
is directly in terms of reservoir properties (lithofluid classes, net to
gross, porosity), then the likelihood includes the rock-physics model
relating reservoir properties to elastic properties as well as the wave-
propagation model relating elastic properties to seismic data. Spatial
correlation of the model parameters may be incorporated into the
prior model, though not all of the published Bayesian inversion
methods do so.

The formulation for the joint seismic and petrophysical inversion
requires a partition of the model space in reservoir and elastic medi-
um parameters m = (m,,m,,,) and decomposing the prior informa-
tion factor, in equation 1, according to the chain rule (e.g., Bosch,
1999,2004):

pprior(mres’melas) = ppetro(melas|mres)ppri0r(mres)» (2)

where ppyio(m,,) is the prior probability density for the reservoir pa-
rameters and ppeqo(Me,| My is a conditional probability for the
elastic parameters that summarizes the rock-physics or petrophysi-
cal information on reservoir- and elastic-property relationships.
Similar formulations for the prior density in the joint petrophysical
and seismic inversion are described by Eidsvik et al. (2004), Gun-
ning and Glinsky (2004), Larsen et al. (2006), Bosch et al. (2007),
Spikes et al. (2007), Buland et al. (2008), Gonzalez et al. (2008), and
Bosch et al. (2009b). Grana and Della Rossa (2010) use Gaussian
mixture models in a Bayesian framework, combining statistical rock
physics with seismic inversion to obtain a probabilistic estimation of
petrophysical properties.
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The formulation of the posterior probability density for the joint
petrophysical and seismic inversion can be written by inserting the
expanded prior information in expression 1 and modeling the condi-
tional density (e.g., Bosch, 2004):

a-post(mres’melas) = cppetro(melas - f(mres))pdata(dobs
3)

where the petrophysical conditional density is ppeqo(Meps — f(Mys)),
with f being the petrophysical forward function that maps the reser-
voir model parameters to the elastic model parameters. In general,
the petrophysical factor accounts for the deviations of the elastic pa-
rameters from their expected petrophysical transformed values, un-
certainties of the petrophysical forward function, and spatial vari-
ability of the deviations.

Many different work flows combine seismic inversion for elastic
properties, geostatistics, and rock-physics models to predict reser-
voir properties. The work flows may be grouped in two categories,
depending on whether the combination is stepwise or unified in a
single formulation. The sequential or cascaded approach (Dubrule,
2003; Doyen, 2007) consists of first inverting the seismic data for
elastic properties and then using rock-physics models and a statisti-
cal classification scheme to transform the elastic properties to reser-
voir properties, which may then be used as soft data to constrain geo-
statistical simulations of reservoir properties. The seismic inversion
for elastic properties may be a deterministic gradient-based inver-
sion or a stochastic inversion. In contrast, the joint or simultaneous
work flow accounts for the elastic parameters and the reservoir prop-
erties together, often in a Bayesian formulation, guaranteeing con-
sistency between the elastic and reservoir properties.

The justification of a unified formulation for the seismic and
petrophysical inversions can be considered in the issues of exacti-
tude, precision, and quantification of the uncertainties. The exacti-
tude (absence of bias) of parameter estimates (mean, maximum
probability, median) is equivalent between the cascaded and joint
work flows if the relationship between elastic and reservoir parame-
ters is linear; for other cases, the unified approach

-8 (melas)) pprior(mres) s
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termediate step in inferring reservoir properties in seismic reservoir
characterization. The band-limited nature of the seismic data, to-
gether with observational and modeling uncertainties, gives rise to
the inherent nonuniqueness of the seismic-inversion-for-elastic-
properties problem. In other words, many configuration combina-
tions of elastic earth models fit the data equally well.

The inversion of seismic data for elastic properties can be posed as
a deterministic problem or as a stochastic problem, i.e., model ran-
dom parameters characterized by probability densities. Russell
(1988) summarizes two of the widely used deterministic or optimi-
zation-based methods of seismic inversion for elastic properties:
sparse-spike techniques and model-based inversion. Sparse-spike
techniques deconvolve the seismic trace under sparseness assump-
tions of the reflectivity series, an idea initially proposed by Olden-
burg et al. (1983). First, reflectivities are obtained; then, impedances
are computed, including the missing low frequencies, usually from
well data, seismic-velocity analysis, or a kriging estimate of the low-
frequency trend. In model-based methods (Russell and Hampson,
1991), starting from a given initial model, the inversion algorithm
perturbs the model until some minimization criteria are satisfied.
The objective function, or the function to be minimized, is usually a
difference between the observed and modeled data. However, addi-
tional regularization terms are usually included in the objective
function to restrict possible solutions to those that satisfy additional
criteria, such as a fixed mean layer thickness, smoothness, or a con-
dition of lateral continuity.

Gradient-based methods attempt to solve nonlinear minimization
problems by linearizing around an initial solution. Iterative linear
steps are taken to update the current model based on gradient infor-
mation. The iteration stops when errors in the updates are below
some tolerance. Gradient methods such as steepest descent and con-
jugate gradients or Hessian methods such as Newton’s can be used to
minimize the objective function; they are sensitive to the choice of
the starting point and can easily get trapped in local mimima.

Cooke and Schneider (1983) describe generalized linear least-
squares inversion for impedances from normal-incidence seismic

improves the exactitude of estimates (Bosch, a)
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different work flows may be very close and differ-
ences may be negligible when the same data, pri-
or information, physics, parameterization, and
spatial models are used. Figure 1 shows three dif-
ferent work-flow schematics.
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Although our focus is on methods for assessing
reservoir properties, in this section we briefly de-
scribe some of the traditional methods for invert-
ing for elastic properties from seismic data be-
cause elastic-property estimates are often an in-

Figure 1. Schematic of possible work flows in seismic inversion for reservoir properties
leading to multiple realizations of reservoir properties conditioned to seismic data, the
rock-physics model, and the model of spatial continuity imposed by geology. (a, b) Two
variations of the sequential (or cascaded) work flow. (¢) Simultaneous Bayesian inver-
sion work flow. Data come in at various stages, including seismic data for inversion, well-
log data, cores and thin sections when available, and geologic data from outcrops.
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traces, but Mora (1987) presents a preconditioned conjugate-gradi-
ent algorithm for nonlinear least-squares inversion of multioffset
full-waveform seismic data. Sen and Stoffa (1991) and Ma (2002)
use simulated annealing to tackle the nonlinear optimization prob-
lem. The monograph by Sen and Stoffa (1995) describes many of the
minimization techniques used in seismic inversion, both descent
methods, and global optimization techniques such as simulated an-
nealing and genetic algorithms. Mallick (1995, 1999) describes
some practical aspects of using genetic algorithms for prestack
waveform inversion.

The Bayesian formulation presented in equation 1 can be very dif-
ficult to solve in a closed analytical form. Under appropriate as-
sumptions, equation 1 leads to particular types of problems with
well-established methods for finding the solutions. For example, as
Tarantola (1987) shows, by assuming Gaussian distributions for the
prior probability density and for the errors in the data and by using a
linear forward-model operator, equation 1 yields a posterior proba-
bility density thatis also Gaussian. In this situation, the mean and co-
variance of the posterior probability density are given by the solution
of a least-squares problem; that is, means and covariances, and
hence the complete posterior distribution, are defined analytically. A
less strong assumption about the forward-model operator is that it is
smooth enough to be approximated locally by a multivariate linear
or quadratic function. In this approach (also in Tarantola, 1987),
common nonlinear least-squares methods such as Newton’s can be
used iteratively to search for the maximum posterior probability
model configuration at the closest mode. However, convergence to
the global maximum is not ensured unless the posterior probability
density is monomodal. A posterior covariance can be calculated at
the local maximum, which only accounts for the uncertainty of the
corresponding mode under the local quadratic approximation.

Diverse methods such as simulated annealing can be used to over-
come the problem of multimodality. However, without assumptions
such as the ones just mentioned, the general solution to the inverse
problem consists of enough samples from the posterior probability
density that can be obtained using Monte Carlo (Tarantola, 1987) or
sequential simulation methods. Lortzer and Berkhout (1992) per-
form a linearized Bayesian inversion of seismic amplitudes based on
a single-interface theory. Gouveia and Scales (1998) define a Baye-
sian nonlinear model and estimate the maximum a posteriori elastic
parameters. Buland and Omre (2003) and Buland et al. (2003) have
developed a linearized Bayesian AVO inversion method, accounting
for the wavelet using a convolution model. They obtain explicit ana-
lytical expressions for the posterior density of the elastic parameters,
providing a computationally fast method. Grana and Della Rossa
(2010) use Gaussian-mixture models, thus avoiding the restrictions
of a Gaussian assumption and taking advantage of analytical expres-
sions available for conditional distributions of Gaussian-mixture
models.

ROCK PHYSICS

Rock physics is included in quantitative seismic interpretation as
a cascaded step after seismic inversion or within a joint seismic/
petrophysical formulation, linking elastic parameters and reservoir
properties. Theoretical and empirical rock-physics models typically
describe the behavior of elastic moduli as a function of factors such
as mineralogy, porosity, pore type, pore fluids, clay content, sorting,
cementation, and stress. We do not review specific rock-physics
models, so the reader is referred to review papers such as Berryman

Boschetal.

(1995) and Avseth et al. (2010), the collection of papers edited by
Wang and Nur (1992, 2000), and rock-physics books (e.g., Guéguen
and Palciauskas, 1994; Schon, 1996; Mavko et al., 2009).

Ideally, the values of the elastic properties derived from inverting
seismic data are assigned to a specific depth or time zone; therefore,
the transformation from elastic to reservoir properties may be done
point by point. However, application of rock-physics models de-
rived at the log or core scale to band-limited seismic inversion re-
sults can be problematic because the inversion results represent seis-
mic-scale aggregate lithologies (Doyen, 2007). This problem can be
treated with appropriate scale transforms for the reservoir and elastic
parameters.

Calibration of the rock-physics model using log data and seismic
synthetic modeling is necessary. With enough training data, varia-
tions of linear or nonlinear regression, geostatistical, and neural-net-
work techniques can be used to empirically convert elastic proper-
ties to reservoir properties without understanding the physical bases
of the transformations. However, applying any statistical correlation
without regard to the underlying physics can easily yield erroneous
results (e.g., Hirsche et al., 1998). Furthermore, it is very difficult to
support predictions of reservoir properties that are not sampled by
well logs or training data, a common situation in frontier explora-
tion. Rigorously, the interpretation is limited to the training data used
to derive the statistical correlation. Here, rock-physics models play a
critical role in deriving correlations between elastic and reservoir
properties for scenarios not sampled in the training data.

Including rock physics not only validates the transformation to
reservoir properties but also makes it possible to enhance well-log or
training data based on geologic processes (e.g., Avseth et al., 2005).
In particular, Mukerji et al. (1998), Mukerji et al. (2001a), and Muk-
erji et al. (2001b) formally introduce statistical rock-physics meth-
ods as a way to combine rock physics, information theory, and geo-
statistics in quantitative reservoir characterization. Earlier pioneer-
ing workers who combine rock-physics models with geostatistical
algorithms to infer reservoir properties include Doyen (1988), Lucet
and Mavko (1991), and Doyen and Guidish (1992).

Statistical rock physics combines theoretical and empirical rock-
physics models with statistical pattern-recognition techniques to in-
terpret elastic properties obtained from seismic inversion and to
quantify interpretation uncertainty. Statistical rock physics is also
useful for identifying additional information that may help reduce
interpretation uncertainties. The statistical rock-physics methodolo-
gy can be divided into four broad steps.

First, well-log data are analyzed to obtain facies definition. This is
done after appropriate corrections, including fluid substitution and
shear-velocity estimation when required. Knowledge of background
geology as well as core and thin-section information (when avail-
able) also play an important part in this step. For each facies, basic
rock-physics relations, such as velocity/porosity and P-/S-wave ve-
locity Vp-Vs, are defined and modeled using appropriate theoretical
or empirical models. We use the term facies for categorical groups
— not necessarily only by lithology type but also by some property
or collection of properties, as, for example, a combination of litholo-
gy and pore fluids. Brine sands and oil sands are considered two dif-
ferent facies or categories. This general procedure also applies for
characterizing continuous reservoir properties such as porosity and
net to gross.

This first step is followed by Monte Carlo simulation of seismic
rock properties (Vp, Vs, and density) and computations of the facies-
dependent statistical probability density functions (PDFs) for seis-
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mic attributes of interest (Figure 2). A key feature is the use of rock-
physics modeling to extend the PDFs to situations that are of interest
but were not encountered in the wells (e.g., different fluid satura-
tions, presence of fractures, different levels of diagenesis or cemen-
tation, different depths). For example, in wells with missing Vs, Vs
prediction must be conducted using Vp-V relations appropriate for
the facies; Gassmann’s equations can be used for fluid substitution;
and lithology substitution can be done using various rock models of
cementation, sorting, and clay content (e.g., Avseth et al., 2005;
Mavko et al., 2009). The extended PDFs are the derived distribu-
tions, conditioned to each facies class: the probability of attributes
given the facies, or P(attributes|facies). Using the derived PDFs of
seismic attributes, feasibility evaluations are made about which set
of seismic attributes contains the most information for the problem.
Discriminating lithologies may require a different set of attributes
than, say, discriminating fractured versus unfractured reservoir
zones. An evaluation of the well-log-based seismic-attribute PDFs
can guide the choice of attributes to be extracted from the seismic
data.

For the third step in the work flow, the elastic properties (or related
attributes) from seismic inversion are used, in a statistical classifica-
tion technique, to classify the voxels within the seismic-attribute
cube. Calibrating the attributes with the probability distributions de-
fined at well locations allows us to obtain a measure of the probabili-
ty of occurrence of each facies. This can be done using Bayes’ theo-
rem to get the posterior probability of facies given the attributes, or
P(facies |attributes), which is proportional to the product of the like-
lihood P(attributes | facies) obtained in step 2 and the prior probabil-
ity of facies, or P(facies), obtained from geology. Various standard
statistical validation tests can be performed to obtain a measure of
the classification success. Neural networks can also be used for this
classification estimation of the probability of facies given attributes
(e.g., Caers and Ma, 2002). Figure 3 shows an example of using
Bayesian classification to predict posterior probabilities of oil sands.
Near- and far-offset impedances obtained from a deterministic in-
version were used as input attributes.

The fourth step in the complete formulation of statistical rock
physics (Mukerji etal., 2001a; Avseth et al., 2005) includes applying
geostatistical stochastic simulation for imposing spatial correlation.
The probabilities obtained in step 3 from classifying seismic at-
tributes depend on the local voxel values of the seismic attributes
and are not conditioned to the neighboring spatially correlated val-

Density (g/cc)

> 2.5
1.5 Vg (km/s)

Figure 2. Isosurfaces of trivariate nonparametric PDFs for Vp, Vs,
and density for brine sands (blue) and gas sands (red). From Avseth
etal., 2005.
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ues. Hence, this final geostatistical step may be used to update the
seismically derived probabilities by taking into account geologically
reasonable spatial correlation and by conditioning to the facies and
fluids observed at the well locations.

The general work flow is applicable to categorical variables such
as lithofacies or for characterizing continuous properties such as po-
rosity and net to gross. The work of Saltzer et al. (2005), Bachrach
(2006), and Sengupta and Bachrach (2007) are examples of the se-
quential or cascaded work flow, using deterministic inversion fol-
lowed by statistical rock-physics methods to infer reservoir proper-
ties such as shale fraction, porosity, and saturations. Similarly, Sams
and Saussus (2007) use a deterministic impedance inversion fol-
lowed by Bayesian rock-physics transforms. Grana and Della Rossa
(2010) use a linearized Bayesian inversion to estimate P- and
S-wave impedances, followed by statistical rock-physics modeling
in a Bayesian framework to calculate the conditional probabilities of
petrophysical variables (porosity, water saturation, and clay content)
and lithofluid classes (oil-sand, water-sand, and shale) conditioned
to the seismic impedances.

These procedures apply in a similar manner for the joint seismic
and petrophysical inversion work flow, with a variation in step 3. In-
stead of a cascaded estimate of elastic and reservoir parameters, they
are jointly estimated, honoring within uncertainties the seismic re-
flection data and the petrophysical relationships. Examples of a joint
approach include work by Leguijt (2001, 2009), Bosch (2004), Eids-
vik et al. (2004), Gunning and Glinsky (2004), Larsen et al. (2006),
Bosch et al. (2007), Spikes et al. (2007), Buland et al. (2008),
Gonzilez et al. (2008), Bosch et al. (2009a), and Bosch et al.
(2009b).

Figures 4 and 5 illustrate the joint approach for estimating total
porosity and acoustic impedance in the setting of clastic and carbon-
ate sequences at a heavy-oil producing field (from Bosch et al.,
2009a). Figure 4 shows total porosity versus acoustic impedance
crossplots, derived from well logs and upscaled to the seismic reso-
lution. As shown in the figure, the acoustic impedance is well corre-
lated to the total porosity in this area. A petrophysical model calibrat-
ed to the data is also shown, which is used to define the conditional
petrophysical density in the expression 3. Thanks to this petrophysi-
cal coupling, the porosity and impedance are estimated jointly with
the petrophysical seismic inversion technique, as shown in Figure 5.

Figure 3. Result of Bayesian classification of near- and far-offset im-
pedances using a statistical rock-physics work flow. Isoprobability
surface shows 75% probability of oil-sand occurrence in a North Sea
reservoir. Vertical extent is about 100 m; lateral extent is 12 km
along the long dimension. From Avseth et al., 2005.
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In this area, shale layers are characterized by low acoustic imped-
ance (and corresponding large total porosity), which can be identi-
fied from the impedance and porosity sections. The high-acoustic-
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Figure 4. Crossplot of well-log properties rescaled at seismic resolu-
tion: acoustic impedance versus total porosity. Colors indicate water
saturation. The continuous black line shows the petrophysical trans-
form calibrated to the well-log data. The gray band indicates plus
and minus one standard acoustic impedance deviation from the
transform, as used in the petrophysical statistical model. Adapted
from Bosch et al., 2009b.
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impedance (and small total porosity) layers correspond to carbonate
and sand, which cannot be discriminated in this area by their P-wave
impedance alone. Major interpreted strata correlating with well in-
formation are indicated in the figure.

Depending on the stage of the reservoir’s exploration, develop-
ment, and production cycles, the steps outlined above may be modi-
fied. Not all of the steps may be carried out in the initial exploration
stages, where there is little or no well data. In the exploration stage,
the PDFs of just a few basic facies categories (say, shale, oil sand,
brine sand) can be estimated from wells and a quick classification
done using seismic attributes derived at a few locations, e.g., a few
AVO intercepts and gradients derived from a handful of common-
depth-point (CDP) gathers. In some cases at the early exploration
stage, there may be no wells, and the PDFs of rock properties may be
based on rock-physics models for analogous data from regions of
similar geologic history. In the development stage, based on more
extensive well data, additional facies categories may be defined
(e.g., shale, unconsolidated sand, cemented sand). Seismic attributes
extracted after careful inversions over a full 3D volume may be used
in the classification.

ADDING SPATIAL
CONSTRAINTS

Reservoir characterization requires inte-
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1650 20 40 60 80 100 120 140 160 1650 m=r14.0 rating the spatial correlation of reservoir het-
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Figure 5. Results of (a) acoustic impedance and (b) total porosity sections resulting from the
petrophysical inversion of the seismic data shown in Figure 4 with no well-log conditioning.
The acoustic impedance and total porosity calculated from the well-log data are superim-
posed for comparison with the inversion results. Tops for major carbonate and sand layers
are shown. Names beginning with C indicate carbonate layer; those with S indicate sand.

Adapted from Bosch et al., 2009b.

lution in the simulations is achieved at dis-
tances around the range of correlation with the
wells. However, this approach requires that
the forward model include the appropriate up-
scaling — directly, using a full-physics wave-
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propagation model, or approximately, using a dual-scale model con-
sisting of an upscaling function followed by a simplified wave-prop-
agation model. Figure 6 describes the model parameters and rela-
tions for different types of geostatistical seismic inversion condi-
tioned to well-log data.

Spatial variability is typically modeled using various geostatisti-
cal methods. Some references on general geostatistical methods are
Deutsch and Journel (1998), Dubrule (2003), and Caers (2005). In
the sequential work flow of seismic inversion for reservoir proper-
ties, geostatistical methods can be used in step 1 (seismic inversion
for reservoir properties), in step 2 (transformation of elastic proper-
ties to reservoir properties), or in a final step after estimating elastic
and reservoir properties. In the latter approach, the localized well in-
formation and the 3D properties estimated from the seismic data are
combined for estimating the property fields at subseismic scale.
Cokriging is a classic geostatistical method that has been used for
this purpose. However, kriging techniques are for point estimation
and do not honor true spatial variability. Geostatistical cosimulation
is essential to imprint true spatial variability to the property fields.
Examples are given by Doyen (1988), Lucet and Mavko (1991),
Doyen and Guidish (1992), Zhu and Journel (1993), and Mukerji et
al. (1998). Mukerji et al. (2001a) use near- and far-offset seismic
stacks to invert deterministically for the near- and far-offset imped-
ances. These are input into a Bayesian classification scheme using
statistical rock-physics models to obtain proba-
bility maps of different lithofluid classes. These a)
probabilities are then updated using a geostatisti-
cal Markov-Bayes indicator cosimulation to get
the posterior probabilities and multiple realiza-
tions of lithofluid categories.

However, in geostatistical inversion for elastic
properties (Bortoli et al., 1993; Haas and Du-
brule, 1994), geostatistical simulations are more
closely integrated with the seismic inversion at
the initial stage itself. The original methodology
of Bortoli et al. (1993) and of Haas and Dubrule
(1994) consists of local trace-by-trace optimiza-
tion combined with sequential geostatistical sam-
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sion scheme that is equivalent to the Haas and Dubrule method with
the addition of a simulated annealing component. The work of Sams
etal. (1999) shows a practical application of the Debeye et al. meth-
od to generate multiple 3D realizations of lithology and porosity
consistent with geology, petrophysics, and seismic data in a central
Sumatra basin mature reservoir. Kane et al. (1999) present a similar
geostatistical approach, adding a simple but fast and effective Monte
Carlo method to generate solutions. As in the Haas and Dubrule
(1994) method, the Debeye et al. (1996), Sams et al. (1999), and
Kane et al. (1999) methods as originally published are for inverting a
single stacked seismic volume, although the concepts can be extend-
ed to multiple partial stack volumes by jointly simulating P- and
S-impedance logs at each location.

Francis (2005, 2006a) proposes an alternative geostatistical seis-
mic-inversion method that exploits the advantage of the fast Fourier
transform-based spectral simulation to generate impedance realiza-
tions, conditional to well data, much faster than sequential simula-
tion techniques. In Francis’ method, conditioning to seismic data is
accomplished by applying the generalized linear inversion algo-
rithm to update the initial geostatistical realizations of impedance.
This method can be used for a joint inversion of multiple seismic
volumes, such as near- and far-offset volumes or time-lapse studies,
by generating coupled initial conditional realizations. Escobar et al.
(2006) have developed a variation of the geostatistical inversion al-
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simulated impedance logs using a 1D convolu-
tion model are compared with the actual seismic
data. The simulated log that gives the best fit to
the seismic data is retained and used as a con-
straint for simulating vertical logs at the next ran-
dom location. The seismic data constrain the in-
version within the seismic bandwidth, but the
higher spatial frequencies are stochastically con-
strained by the variograms obtained from well
logs and the hard data at the wells.

Debeye et al. (1996) present a stochastic inver-

Figure 6. Data and model parameter spaces for the (a) seismic inversion and (b) petro-
physical seismic inversion methods conditioned by well-log data. Thin arrows indicate
the forward sense; thick arrows indicate the inverse sense; curved arrows indicate condi-
tioning from well-log data. The function f,, is the rock-physics relation between reser-
voir parameters and elastic parameters; g,y 1S an upscaling function from subseismic
to seismic scale; and g, is the forward seismic model that predicts the seismic data from
the elastic parameters.
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gorithm. By assuming Gaussian priors and likelihoods and by linear-
izing the forward model, they can approximately decouple the high-
dimensional posterior distribution as a product of Gaussian distribu-
tions. Then they use sequential Gaussian simulation to draw from the
posterior distribution of elastic properties.

Geostatistical seismic inversion schemes have implementation
requirements that demand careful consideration. An important one is
time-to-depth conversion to relate well-log-based properties to seis-
mic traveltime. A second, equally important consideration is the
need to define carefully the directions to drive the lateral correlation.
In some geostatistical models, only the vertical variability is charac-
terized and used to constrain the estimated property fields, whereas
different traces are considered spatially independent, with the lateral
continuity being implicit through the seismic data. The vertical vari-
ogram is commonly based on the characterization of the well-log-
derived properties.

In more complete formulations, and particularly for conditioning
the property fields to well logs, the properties are explicitly modeled
as laterally related. The property fields estimated from the seismic
inversion or the seismic data can be used to characterize the lateral
variability of the strata; other approaches are to adopt the vertical
variogram with a range extended with the typical aspect ratio of the
strata or an assumed variogram model with a range related to the typ-
ical strata correlation length. In general, lateral correlation should be
based on a sufficiently fine and well-traced network of horizons, sur-
faces, or cells that follow the strata. A third issue is the separation of
domains by faults, unconformities, and discordances so that spatial
correlation is zero across these geologic discontinuities. A thorough
integration of well-log data with seismic information requires, in
general, a detailed interpreted model.

In the joint work flow discussed earlier, geostatistical seismic in-
version can incorporate spatial correlation within the steps of the in-
version itself and can be used to draw geologically consistent real-
izations from the prior P(facies). Then a numerical simulation algo-
rithm such as Markov-chain Monte Carlo can be used to draw real-
izations from the posterior P(facies|attributes) using the likelihood
P(attributes|facies). This likelihood involves the rock-physics
model relating facies to elastic properties and the wave-propagation
forward model relating elastic properties to seismic attributes. Alter-
natively, under a deterministic approach, a consistent optimal con-
figuration can be estimated to honor within uncertainties the seismic
data, the petrophysical relationships, and the spatial model con-
straints.

Eidsvik et al. (2004) formulate the inversion problem as a simulta-
neous inversion in terms of a Bayesian network model. They incor-
porate lateral spatial continuity in the prior distribution of reservoir
properties via a Markov random-field model. Larsen et al. (2006) in-
corporate vertical spatial correlation using a Markov-chain model.
Examples of application of the geostatistical inversion method to
reservoir characterization include Torres-Verdin et al. (1999) and
Contreras et al. (2005).

Figure 7 illustrates in a didactic manner the combination of well-
log and seismic data for property estimation in the setting of a petro-
physical inversion in the acoustic domain. In this case of a gas reser-
voir, the seismic data are modeled via the acoustic impedance, total
porosity, and water-saturation fields. The impedance is linked to the
seismic data by a normal-incidence reflectivity and convolutional
model and to the porosity and saturation by a petrophysical model
calibrated to well-log data. Conditioning well W1 is at one extreme
of the section; well W2 is a control well to validate the results. The

Boschetal.

first column of the figure shows a geostatistical estimation (kriging)
based on well W1’s properties and spatial correlation directions that
follow a reference reflector in the reservoir. The second column
shows a petrophysical inversion with no well-log conditioning. The
third column shows the petrophysical inversion conditioned by well
W1. The result of the third column capitalizes on information from
the two sources, well logs, and seismic data, showing improved ver-
tical resolution and well W2 correlations as compared with the un-
conditioned inversion.

Many of the geostatistical algorithms used in geostatistical inver-
sion methods rely on two-point statistics (variograms or spatial co-
variance) to capture geologic continuity. However, the variogram
does not incorporate enough information to model complex geolog-
ic structures or curvilinear features. To get over this limitation of the
two-point geostatistics, Guardiano and Srivastava (1993) present
the ideas of training images and multipoint statistics (MPS) for geo-
statistical simulations. A training image can be defined as a represen-
tation of the expected type of geologic variability in the area of study.
It reflects the prior geologic knowledge, including the type of fea-
tures or patterns expected, but it does not need to be conditioned to
any hard data. All current MPS algorithms (e.g., Strebelle and Jour-
nel, 2001) extract the MPS, i.e., probability of a state at a particular
position given the states of multiple neighbors, from a training im-
age.

Gonzilez et al. (2008) introduce one of the first attempts to use
MPS in the seismic-inversion context to obtain reservoir properties
directly. Their method combines rock physics and MPS to generate
multiple realizations of reservoir facies and saturations, conditioned
to seismic and well data. The inversion technique is based on the for-
mulation of the inverse problem as an inference problem, with MPS
to characterize the geologic prior information and conditional rock
physics to characterize the links between reservoir properties and
elastic properties. The Gonzélez et al. (2008) inversion method pro-
vides multiple realizations, all consistent with the expected geology
and well-log and seismic data, that honor local rock-physics trans-
formations; yet it does not rigorously sample the solution space or
posterior PDE. Their approach combines elements of sampling from
conditional probabilities with elements of optimization, providing
solutions that limit all possible geostatistical realizations to the ones
that can reproduce the available geophysical observations within a
certain range of tolerance, given conditional rock-physics distribu-
tions.

In Gonzélez et al.’s (2008) work, rock-physics principles are in-
corporated at the beginning of the inversion process, establishing the
links between reservoir properties (e.g., lithology, saturation) and
physical quantities (e.g., impedance, density). It also uses the con-
cept of derived distributions from the statistical rock-physics work
flow. Hence, itis possible to predict reservoir conditions not sampled
by well-log data, and the consistency between reservoir and elastic
properties in solutions is guaranteed. Gonzalez et al.’s implementa-
tion uses a pattern-based MPS algorithm; however, it can be changed
by any multipoint geostatistical technique without modifying the
core structure of the entire inversion algorithm. Still, there are many
ongoing research efforts for developing MPS algorithms capable of
handling more realistic training images and for the practical aspects
of defining and selecting appropriate training images based on geol-

ogy.
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DISCUSSION

Characterization of reservoir properties by combining seismic in-
version, rock physics, and geostatistics depends on the quality of the
data, the characteristics of the reservoir, and the methods applied.
The elastic properties of rocks are influenced by pore fluids, com-
paction, cementation, and other factors, and relationships between
the lithology, pore fluids, and seismic parameters depend on the spe-
cific reservoir setting. In many situations, lithological discrimina-
tion is an achievable goal, especially when P- and S-wave attributes
are combined within a well-calibrated elastic and rock-physics mod-
el. Effects of fluids can cause ambiguities in lithology discrimina-
tion. The effects of pore fluids on the elastic properties of the rock de-
pend not only on fluid properties such as density and compressibility
but also on the scales of saturations of the pore fluids as well as the
pore compliance of the dry rock. Rocks with elastically compliant
pore space (e.g., unconsolidated or poorly consolidated sands) are
more sensitive to fluid changes than rocks with elastically stiff pores

Geostatistical estimation
from well data
Wi1 Distance (m) w2 Wi
0 3000 6000 9000 0 3000

Unconditioned
seismic inversion

Distance (m)
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(e.g., well-cemented, well-compacted, unfractured sandstones).
Discriminating hydrocarbon from formation water is easier when
fluid density and compressibility differences are larger. Hence, shal-
low reservoirs with elastically compliant rocks and light oil or gas
contribute to positive and easy fluid discrimination.

The results of a reservoir-characterization study depend on meth-
ods applied. Different workers discuss the main differences between
deterministic and stochastic seismic inversion methods (e.g., Helge-
sen et al., 2000; Sancevero et al., 2005; Sams and Saussus, 2008;
Moyen and Doyen, 2009). Francis (2006a, 2006b) presents a partic-
ularly nice comparison. In summary, deterministic methods provide
a single, local smooth estimate of the subsurface elastic properties
with inaccurate assessment of uncertainty. This single, smooth esti-
mate commonly leads to biased estimate of volumes and connectivi-
ty. On the other hand, stochastic or Monte Carlo inversion methods
provide multiple solutions, all conditional to the seismic data and
well observations, allowing better estimates of volumes and connec-
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Figure 7. Matrix of plots corresponding to results of the inversion method for (a) acoustic impedance, (b) total porosity, and (c) water saturation.
Cokriging of well data is along the structural reference horizon. Middle column is sections estimated by seismic petrophysical inversion with no
well-log conditioning for (d) acoustic impedance, () total porosity, and (f) water saturation. Right column is sections estimated by the seismic
petrophysical inversion conditioned to well W1 data for (g) acoustic impedance, (h) total porosity, and (i) water saturation. At well paths W1 and
W2, the well-log-derived properties are superimposed on the corresponding inversion estimates for comparison. Numbers at the bottom of the
plots indicate the correlation factor between the estimated property and the corresponding well-log-derived property. Adapted from Bosch etal.,
2009a.
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tivity along with an appropriate and crucially important uncertainty
assessment. Geostatistical inversion for lithofacies, by including re-
alistic geologic spatial models, can better reproduce the shapes of
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Figure 8. Conventional deterministic inversion compared with in-
version incorporating multipoint geostatistics. (a) Input true model,
showing spatial distributions of lithology categories (sand and
shale), corresponding compressional velocity Vp and density, and
Vp-density relation for the two lithologies. (b) Input seismic data for
the inversion, computed from the true model using the invariant-em-
bedding reflectivity method (Kennett, 1974) with a 15-Hz Ricker
wavelet. (¢) Acoustic-impedance section obtained from seismic data
in (b) by using a commercially available implementation of the
sparse-spike inversion algorithm. (d) Probability (E-type) for sand
groups, computed by averaging more than 30 realizations obtained
from an MPS-based inversion (Gonzdlez et al., 2008) of the same
seismic data. By including geologically realistic spatial models,
geostatistical inversion can better reproduce the channels shapes,
which are smoothed in conventional deterministic seismic inver-
sion.

Boschetal.

geobodies such as channels and lobes, which are smoothed out in a
conventional deterministic seismic inversion (Figure 8).

Whether deterministic or stochastic, most seismic-inversion work
flows require forward seismic modeling. The most common ap-
proach has been based on the convolutional model. Although this
has been a useful workhorse and has given considerable mileage, we
foresee future improvements with wave-equation-based 3D model-
ing. Presently, CDP modeling is supported by previous prestack
seismic migration; it is likely that this process will be accounted for
with 3D forward modeling because it is in the general formulation of
the full-waveform inversion techniques. Upgrading the isotropic
elastic model with more complete mechanical medium models (an-
isotropic, viscoelastic, poroelastic) would be justified in cases with
good-quality data.

Regardless of the potential advantages of Monte Carlo inversion
methods, most of the seismic inversion projects use deterministic al-
gorithms (Doyen, 2007). Deterministic inversion methods are easier
to apply because of fewer computations involved, ease and avail-
ability of software and existing expertise, and therefore less effort
and time required to generate results (Sams and Saussus, 2008). On
the other hand, partly because of limitations of accessible computer
hardware and software in the past, only in recent years have com-
mercial tools and workflows been available to overcome the difficul-
ties of handling and interpreting the multiple realizations of any geo-
statistical inversion scheme.

Additionally, as Doyen (2007) points out, there have been some
misconceptions about the resolution of the results obtained with
geostatistical inversion methods. Monte Carlo inversions can pro-
vide solutions at any desired sampling; however, that does not mean
the seismic resolution is increased. Only within the range of well-log
information is the vertical resolution of the model (not the seismic
data) increased by spatial conditioning of the model properties to the
fine-scale, log-derived properties. In geostatistical inversion meth-
ods, the temporal frequency content outside the seismic bandwidth
is simulated, in the geostatistical sense, based on the spatial correla-
tion model selected and maintaining consistency with well observa-
tions. In fact, as suggested, the way geostatistical inversion assesses
uncertainties resulting from the band-limited nature of the seismic
data is by generating multiple full-bandwidth impedance or elastic-
property models consistent with the seismic data, spatial correla-
tions, and well observations.

Finally, a word of caution about using multiple geostatistical real-
izations as a measure of uncertainty (Dubrule et al., 1996; Dubrule,
2003). It has been argued (Massonnat, 2000) that uncertainties asso-
ciated with different geologic scenarios are far more significant than
those captured by multiple realizations under a single scenario. Dif-
ferent scenarios obtained from different plausible geologic concepts
about the depositional system must be combined with geostatistical
simulations for each scenario. Lia et al. (1997), Corre et al. (2000),
Charles et al. (2001), and Dubrule and Damsleth (2001), among oth-
ers, discuss approaches for quantifying uncertainty in reservoir char-
acterization by combining geologic scenarios with geostatistical re-
alizations. Some future directions of research could include stronger
coupling of geology with quantitative reservoir models, use of geo-
statistical inversion for prestack seismic data, and tighter integration
of seismic reservoir characterization with matching production his-
tory and making decisions related to reservoir management. Assess-
ing uncertainty in and of itself may have little value unless it is linked
to specific reservoir decisions.
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CONCLUSION

We have reviewed seismic-inversion schemes (deterministic and
stochastic) that incorporate rock-physics information and geostatis-
tical models of spatial continuity. Seismic inversion by itself is a suc-
cessful technique to predict elastic properties from seismic data.
However, reservoir characterization requires techniques that go be-
yond inverting for elastic parameters (e.g., impedances, elastic mod-
uli) and that try to infer reservoir properties of interest, such as lithol-
ogy, porosity, and fluid saturation. Empirical or theoretical statistical
rock physics provides information serving as the bridge between
elastic and reservoir properties, whereas geostatistical methods im-
pose on the estimated or simulated property fields the appropriate
spatial variability and coherence with localized information, typi-
cally from well logs. The most general formulation is given in terms
of Bayesian inference, i.e., modeling information by probability
densities in parameter spaces and integrating the information to pro-
duce a combined posterior probability density.

The inference problem can be separated into its information com-
ponents — seismic data, rock physics, and geostatistics — and
linked via various cascaded work flows or formulated jointly. Once
the formulation and relevant parameters are chosen according to the
case, the solution methods can be grouped into two major approach-
es: optimization and sampling. The first one uses algorithms that
search for the maximum of the combined probability, commonly at a
local mode; the second uses techniques that produce an ensemble of
samples (realizations) from the combined probability density to pro-
vide marginal parameter estimates and probabilistic interpretations.
The technique, in various possible work flows, is a major contribu-
tion to reservoir characterization and should be considered part of an
almost standard and essential work flow after seismic processing.
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