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ABSTRACT

Hydrocarbon reservoirs are characterized by seismic, well-
log, and petrophysical information, which is dissimilar in spatial
distribution, scale, and relationship to reservoir properties. We
combine this diverse information in a unified inverse-problem
formulation using a multiproperty, multiscale model, linking
properties statistically by petrophysical relationships and condi-
tioning them to well-log data. Two approaches help us: �1� Mark-
ov-chain Monte Carlo sampling, which generates many reservoir
realizations for estimating medium properties and posterior mar-
ginal probabilities, and �2� optimization with a least-squares iter-
ative technique to obtain the most probable model configuration.
Our petrophysical model, applied to near-vertical-anglestacked
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eismic data and well-log data from a gas reservoir, includes a de-
erministic component, based on a combination of Wyllie and

ood relationships calibrated with the well-log data, and a ran-
om component, based on the statistical characterization of the
eviations of well-log data from the petrophysical transform. At
he petrophysical level, the effects of porosity and saturation on
coustic impedance are coupled; conditioning the inversion to
ell-log data helps resolve this ambiguity. The combination of
ell logs, petrophysics, and seismic inversion builds on the cor-

esponding strengths of each type of information, jointly improv-
ng �1� cross resolution of reservoir properties, �2� vertical reso-
ution of property fields, �3� compliance to the smooth trend of
roperty fields, and �4� agreement with well-log data at well
ositions.
INTRODUCTION

The 3D characterization of hydrocarbon reservoirs requires inte-
rating information across medium properties at different spatial
cales and distributions: �1� high-resolution well-log information at
rregularly distributed well paths, �2� uniformly sampled informa-
ion from 3D seismic data with low vertical resolution, �3� petro-
hysical information relating reservoir properties and scales, and �4�
eostatistical information relating property fields in space. Common
rocedures rely on stepwise processing of the different types of data
nd information �seismic, well log, petrophysical, and geostatisti-
al� and their combination in various work flows. The goal of our
ork is to describe a method to integrate this information into a uni-
ed inversion scheme, accounting for nonlinear relations across me-
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ium properties and data as well as the combination of uncertainties
elated to the various information components.

The combination of well-log data and seismic information for es-
imating reservoir and elastic medium properties has motivated the
evelopment of different techniques. In Doyen �1988�, well-log po-
osities are extrapolated by correlation with the acoustic impedance
stimated from seismic data, using the well-known cokriging tech-
ique. An additional step in integrating seismic data within geo-
tatistical methods is described by Haas and Dubrule �1994�, who
ropose a method to generate acoustic impedance realizations con-
itioned to the well-log data and seismic stacked data simulated by
D convolution of the model reflectivity. Also, Torres-Verdin et al.
1999� focus on the problem of generating realizations of acoustic
mpedance and discrete facies types jointly honoring stacked seis-
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O2 Bosch et al.
ic data and well logs using a simulated annealing technique. Inte-
ration of well-log data and seismic data partially stacked at differ-
nt incidence angle ranges is described by Contreras et al. �2005� for
oint estimation of elastic medium parameters and facies types. In
onzalez et al. �2008�, facies types also are related with seismic data
sing a multipoint geostatistical model that honors spatial well con-
traints.

We can circumscribe these works to the field of geostatistical in-
ersion of seismic data. The advantages of geostatistical inversion
elated to plain geophysical inversion are manifold: estimated prop-
rty fields match well-log data at well location, seismic data are hon-
red, and field resolution increases along the well direction in the re-
ion within the range of spatial property correlation.

Effort has been directed to integrate petrophysical and geophysi-
al inversion within a common inference formulation. In this ap-
roach, the seismic data are inverted under the constraint of a petro-
hysical model and prior information; the result is a joint estimate of
lastic and reservoir �e.g., porosity, facies, fluid� properties. In
osch �2004�, a statistical formulation for the joint inversion is de-

cribed and numerical examples are presented for the case of invert-
ng short-offset seismic data to estimate acoustic impedance and po-
osity. The relation between impedance and porosity is embodied in
petrophysical mixed model �deterministic mean and random devi-
tions� calibrated to well-log data; an optimization method is used to
roduce a linear system of equations for the joint porosity and im-
edance model updates. Bosch et al. �2007� describe a similar for-
ulation to solve the inference problem with a sampling Monte Car-

o approach, providing an application to a field case. Also, Spikes et
l. �2007� focus on constraining a seismic inversion with a petro-
hysical model calibrated to well-log data and estimating elastic and
eservoir parameters from two constant-angle stacks, showing a
eld case. Larsen et al. �2006�, Buland and Omre �2006�, and Gun-
ing and Glinski �2007� describe similar methods illustrated by syn-
hetic tests.

igure 1. Model parameters and data involved in the inference prob-
em—information components and their relations. Thin black ar-
ows indicate the forward-modeling sense. Thick arrows indicate the
nverse sense.
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
We can group these works in the field of petrophysical inversion
f seismic data. The advantages of petrophysical inversion com-
ared to plain seismic inversion are also manifold: reservoir proper-
ies are estimated in addition to elastic properties, relations across

edium properties honor the petrophysical model, and prior infor-
ation constraining the reservoir properties holds. Other ways to

ombine seismic and petrophysical information follow a two-step
rocess: �1� calculating seismic attributes or inverting the seismic
ata and �2� using these results within a petrophysical statistical
odel to estimate reservoir parameters. Work by Eidsvik et al.

2004�, Bachrach �2006�, Mukerji et al. �2001�, Saltzer et al. �2005�,
nd Sengupta and Bachrach �2007� is based on this approach.

Our work extends the method of petrophysical inversion de-
cribed by Bosch �2004� and Bosch et al. �2007� to include well-log
ata constrained on the basis of a geostatistical model, combining
enefits of the geostatistical and petrophysical approaches and inte-
rating surface seismic data, well-log data, petrophysics, and geo-
tatistics. We parameterize the model in two scales to address the dif-
erent resolution of well logs and seismic data, with a scale relation
etween them based on petrophysical change of support transforms.
ffective medium theory �Backus, 1962; Schoenberg and Muir,
989� describes averaging functions to obtain the elastic medium
arameters at seismic resolution from the corresponding parameters
t finer resolution; it also encompasses the full anisotropic elastic
tiffness tensor parameters. Impedances, for instance, commonly are
ower at seismic scale than the corresponding impedances measured
t well-log scale. Ray theory, on the other hand, provides averaging
unctions for the properties, assuming high-frequency propagation.

The two formulations correspond to the upper and lower limits of
he ratio between the wavelength and the characteristic thickness of
he strata. Behavior at intermediate ratios is bounded approximately
y the effective media and ray-theory results, depending on factors
uch as the statistical spatial characterization of the heterogeneities
nd the actual frequency composition of the signal as shown by mod-
ling and laboratory tests �Mukerji, 1995; Grechka, 2003; Stovas
nd Arntsen, 2006�. In many practical applications to reservoirs, an
ntermediate recipe combining the two bounds is recommended �Rio
t al., 1996�. Here, we use an upscaling formulation of the imped-
nce that lies between these two limits.

We describe our methods, characterize the well-log data to cali-
rate our petrophysical and geostatistical models, and apply two dif-
erent inversion techniques — sampling and optimization — to seis-
ic data from a gas reservoir area. For comparison, we show the re-

ults obtained from the seismic petrophysical inversion with no well
onditioning, the plain geostatistical estimation, and the seismic in-
ersion conditioned by the well-log data.

THEORY AND METHOD

The joint model parameter array is a composition, m � �mgeo,

elas�, of parameters describing the reservoir property fields mgeo and
arameters describing the elastic-property fields melas. In addition,
he elastic properties are described at two different vertical scales:
1� high-resolution parameters linked with the well-log information
nd �2� low-resolution parameters according to the vertical resolu-
ion of the seismic data. Figure 1 describes the model parameters, the
ata subspaces, the information involved in the problem, and their
elations.
SEG license or copyright; see Terms of Use at http://segdl.org/
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Integrated inversion of reservoir data O3
tatistical formulation

The knowledge about medium parameters is described with a
robability density function �PDF� that combines the different types
f information and data considered. The combined probability den-
ity is given by the product of three factors that cast the types of in-
ormation included in our problem �Bosch, 1999�:

�1�
he PDF �geo�mgeo� describes the prior geostatistical information in

he reservoir property fields, including the well-data constraints. The
onditional probability density ��melas�mgeo� is a petrophysical like-
ihood function, based on the petrophysical model that predicts the
lastic properties from the reservoir properties. In addition, this fac-
or embodies geostatistical constraints of the elastic properties; it

easures the probability of the elastic-property fields given a partic-
lar reservoir field configuration and well-log measurements. The
actor Lseis�melas� is the geophysical likelihood function that mea-
ures the proximity between the observed and calculated seismic
ata. It depends on the elastic-property field parameters. We model
ach of the factors of the combined probability density with multi-
ariate parametric functions and implement solution methods by
ampling and optimization approaches.

As common in geostatistical formulation, property fields are mod-
led as a multidimensional random variable, with components being
he values of the properties at a given set of points in the medium vol-
me. We model the reservoir-property fields, prior to the well-log
onstraints, with a Gaussian multivariate prior probability density.
onditioning the Gaussian property field to known values of corre-

ated properties at a given set of points �here, the well-log estimates
f the property field� results in a random Gaussian field with proba-
ility density

�geo�mgeo� � c2 exp��1/2�mgeo � mgeo krig�T

� Cgeo krig
�1 �mgeo � mgeo krig�� , �2�

here mgeo krig and Cgeo krig are the simple cokriging estimate and co-
ariance that result from the geostatistical interpolation of the well-
og data. For a review on geostatistical estimation and conditional
imulation, see Isaaks and Srivastava �1989�, Chiles and Delfiner
1999�, and Dubrule �2003�.

In our model, the elastic-medium properties depend on the reser-
oir properties. To describe their relationship, we use a mixed model
uperimposing a deterministic petrophysical transform f�mgeo� for
he central trend and random deviations from the transform melas

f�mgeo� � mdev. We also call petrophysical misfits the deviations

dev of the elastic properties from the corresponding prediction of
he petrophysical transform of the reservoir parameters. Before con-
training the property field with the well-log measurements, we
odel the petrophysical misfits with a multivariate Gaussian proba-

ility density. Parameters of the Gaussian density, such as the covari-
nce function, can be characterized and modeled from the well-log
ata.

To condition the elastic parameters to the well-log observations,
e constrain the elastic parameter deviations from the petrophysical

ransform to the corresponding deviations at the well points. The
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
onstraint field is also Gaussian and is given by the probability den-
ity:

��mdev� � exp��1/2�mdev � mdev krig�T

� Cdev krig
�1 �mdev � mdev krig�� , �3�

ith mdev krig and mdev krig the simple cokriging estimate and covari-
nce for the elastic-property deviations from the petrophysical trans-
orm. By substituting the petrophysical deviations mdev � melas

f�mgeo� in equation 3, we have the expression for the petrophysi-
al likelihood term constrained to the well-log measurements:

��melas�mgeo� � exp��1/2�melas � f�mgeo�

� mdev krig�TCdev krig
�1 �melas � f�mgeo�

� mdev krig�� . �4�

he function provides a large likelihood for the model configura-
ions that jointly honor well-log and petrophysical information.

The third factor in the combined probability density �equation 1�
s a seismic likelihood. It is defined as a Gaussian function of the de-
iations of the observed seismic data dobs and the seismic data calcu-
ated from the model configuration dcal. The latter depends on the
unction that simulates the seismic response of the model dcal

g�melas,msou�, commonly a nonlinear function. Thus, we model
he geophysical likelihood with the expression

L�melas� � exp��1/2�g�melas� � dobs�T

� Cdat
�1�g�melas� � dobs�� , �5�

ith Cdat being the data covariance matrix. In our particular case, the
unction g�melas� involves a scale transformation. It is the concatena-
ion of two functions: gscale�melas� � melas lowres for upscaling the elas-
ic property model parameter from the high-resolution model to the
ow-resolution model �at seismic scale� and the forward function
alculating the seismic data, gseis�melas lowres� � dcal.

Modeling the geophysical likelihood by equation 5, the petro-
hysical likelihood by equation 4, and the prior probability density
n the reservoir parameters by equation 2 fully defines the combined
robability in equation 1. The combined probability depends on the
eismic observed data, functions f�mgeo� and g�melas�, solving the de-
erministic petrophysical and geophysical forward problems corre-
pondingly—the well data from the cokriging estimates and covari-
nces of the reservoir fields and the petrophysical deviation field,
nd reservoir data from prior densities.

Different strategies can be adopted to produce model configura-
ions describing the information summarized by the combined prob-
bility density of equation 1; two major approaches are optimization
nd sampling. The first searches for a model configuration that maxi-
izes the combined PDF; the second explores the model space pro-

ucing a large set of joint model �reservoir elastic properties� real-
zations in proportion to the combined probability.

robability estimation by Monte Carlo sampling

Following the sampling approach, we implement a Markov-chain
lgorithm adapted to the relation between parameters and the specif-
c structure of the posterior probability density in equation 1, com-
ining multivariate Gaussian, Gibbs, and Metropolis sampling tech-
iques. Given a current model configuration, the next configuration
SEG license or copyright; see Terms of Use at http://segdl.org/
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n the chain is generated in the following manner:

� A set of parameters of the reservoir model is modified to gener-
ate a candidate Gaussian multivariate realization following the
prior probability density for the reservoir parameters in expres-
sion 2. The candidate configuration is a realization of the
cokriging probability density, honoring the well-log con-
straints on the reservoir properties.

� Sampling is extended to the elastic parameter space by evaluat-
ing the deterministic petrophysical transform and adding ran-
dom multivariate Gaussian realizations of the petrophysical
misfit.

� The geophysical likelihood of the candidate realization is cal-
culated by upscaling the elastic-property fields, computing the
reflection coefficients, convolving the reflectivity series with
the source function, and comparing the predicted seismic am-
plitudes with the observed amplitudes at the corresponding
common depth point �CDP�, as in equation 5.

� The Metropolis rule is used to accept or reject the candidate
model realization according to the likelihood ratio with the cur-
rent realization in the chain. The acceptance probability is giv-
en by

p � min�1,L�mcand�/L�mn�� , �6�

where mcand is the candidate configuration and mn is the current
odel configuration. When the candidate model configuration is re-

ected, the current model stands for the next step in the sampling
hain, mn�1 � mn.

The process repeats for the next step of the chain and iterates; the
rocedure warrants convergence of the chain to the combined proba-
ility density in equation 1. Hastings �1970�, Geyer �1992�, Smith
nd Roberts �1993�, Tierney �1994�, Mosegaard and Tarantola
1995�, Bosch �1999�, and Bosch et al. �2007� provide additional in-
ormation on Markov-chain Monte Carlo sampling methods.

bjective function and optimization

The optimization approach searches for a model configuration
hat maximizes the combined probability density. Substituting the
ifferent factors in the combined probability of equation 1 and
rouping their exponents in the objective function S � Sgeo � Selas

Sseis, with

Sgeo � 1/2�mgeo � mgeo krig�TCgeo krig
�1 �mgeo � mgeo krig� ,

�7�

Selas � �1/2�melas � f�mgeo� � kdev krig�T

� Cdev krig
�1 �melas � f�mgeo� � mdev krig�� , �8�

nd

seis � 1/2�g�melas� � dobs�TCdat
�1�g�melas� � dobs� , �9�

he combined probability density can be written in terms of the ob-
ective function as � �melas,mgeo� � c exp��S�. A maximum of the
robability density corresponds to a minimum of the joint objective
unction S. Therefore, the solution of the optimization problem con-
ists of searching for the joint model configuration that minimizes
he objective function, jointly satisfying the proximity between �a�
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
he reservoir model configuration and the reservoir-property esti-
ates obtained from the geostatistical interpolation of the well-log

ata, �b� the petrophysical relationship residuals and corresponding
esiduals interpolated from the well-log data, and �c� the calculated
nd observed seismic data.

We use Newton’s method to develop an iterative procedure for up-
ating the joint model configuration �physical and reservoir parame-
ers� to converge to a local minimum of the misfit function. Given a
urrent joint model configuration mn at iteration step n, Newton’s
ethod requires solving a linear system of equations A �m � b to

btain the model update �m � mn�1 � mn, where A is the curva-
ure matrix of the objective function and b is the steepest-descent di-
ection:

A � �I Cgeo krigF
TGTCdat

�1G

0 I � �Cdev krig � FCgeo krigF
T�GTCdat

�1G
� ,

�10�

�m � � �mgeo

�mphys
� , �11�

b � �mgeo krig � mgeo � Cgeo krigF
TGTCdat

�1�dobs � g�mphys��

f�mgeo� � mphys � mdev krig � F�mgeo krig � mgeo�

� �FCgeo krigF
T � Cdev krig�GTCdat

�1�dobs � g�mphys��
	 .

�12�

n expressions 10 and 11, G � ��g/�melas� and F � �� f/�mgeo� are
he Jacobian matrices of g�melas� and f�mgeo�, respectively. In our
ase, the function g�melas� is the concatenation of the functions
scale�melas� � melas lowres for upscaling the elastic-property model pa-
ameter from the high-resolution model to the low-resolution model
at seismic scale� and the forward function calculating the seismic
ata gseis�melas lowers� � dcal. Therefore, the Jacobian of the complete
unction g�melas� � gseis�gscale is the product of the corresponding
acobian matrices G � GscaleGseis, with Gscale � ��melas lowres/
melas� and Gseis � ��gseis/�melas lowres�. The function accounting for

he change of scale depends on the specific elastic parameters. In our
mplementation, we compute the Jacobian matrices by analytical
ifferentiation of the functions involved. The curvature matrix and
he steepest-descent direction are derived from the gradient and Hes-
ian of the objective function given by equations 7–9; a description
f a similar derivation, for the case of the petrophysical seismic in-
ersion unconditioned to well-log data, is given in Bosch �2004�.

SEISMIC, PETROPHYSICAL, AND
GEOSTATISTICAL MODELING

Modeling the petrophysical relationships, property geostatistics,
nd seismic data depends on the setting of the problem. We consider
ere the case of inverting near-vertical-angle seismic stacked and
ime-migrated data, which we simulate as zero-offset seismic data
eflected in a horizontally layered medium. For each common depth
oint �CDP�, we parameterize the medium in time as a series of ho-
ogeneous horizontal layers described by the acoustic impedance

s the elastic parameter related with the seismic observations. The
eismic signal is modeled by convolving the reflectivity series corre-
ponding to the acoustic impedance model with a source wavelet,
SEG license or copyright; see Terms of Use at http://segdl.org/
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Integrated inversion of reservoir data O5
hich is estimated at the well-log positions. The choice of acoustic
mpedance as the physical parameter in the joint model is straight-
orward from its direct relation, with seismic reflected amplitudes at
ear-incidence angles.

odel parameters

For modeling the reservoir properties related to acoustic imped-
nce, we describe rock total porosity and pore fluid jointly. Our
ethods are applied in the setting of a gas reservoir located in clastic

trata. No oil is present in the area; the fluid system includes only gas
nd brine. Hence, the description of the fluid involves only one pa-
ameter, which we take as water saturation Sw. Gas saturation is the
omplement to the unit Sg � 1 � Sw of the water saturation in this
ase. Our justification for this choice of reservoir parameters is two-
old: �1� total porosity and water saturation are properties of major
nterest for reservoir description and management and �2� both prop-
rties strongly relate to acoustic impedance.

We build a petrophysical model to cast these relations, calibrated
o the local well-log data. In this application, we do not include rock
acies in the property model, which also influences acoustic imped-
nce. We include facies and other effects on acoustic impedance in a
andom model characterizing the deviations from the petrophysical
elationship, based on model porosity and gas saturation. A more
omplete petrophysical model including facies along with porosity
nd water saturation is beyond the scope of this work; it would be
uggested for the case of inverting multiple angle stack ranges �or
ultiple offsets� instead of the inversion limited here to the near-ver-

ical-angle data. In this case, improvement in resolution of reservoir
roperties should result from the information on shear rock behavior
mbodied in multiangle measurements.

In formulating the geostatistical modeling and inversion, we have
ade extensive use of Gaussian statistical distributions. Therefore,

or the mathematical computations indicated in the previous section,
e do not describe porosity and water saturation directly as model
arameters. Being bounded properties, they are incompatible with
aussian assumptions. We transform to the logarithmic porosity �*

ln�� /�1 � ���, where � is porosity, and the logarithmic water
aturation Sw

* � ln�Sw/�1 � Sw��, which are unbounded. Inverse
ransforms are, correspondingly, � � exp��*�/�1 � exp��*�� and
w � exp�Sw

*�/�1 � exp�S�
*��. The well-log data actually verify that

he transforms improve normality of the distribution; further im-
rovement could be obtained with a complementary normalization
ransform �see Bosch 2004 for a discussion of the logarithmic trans-
orm�. In summary, our model parameters are the layer acoustic im-
edance, logarithmic porosity, and logarithmic water saturation,
pecified at regular time intervals for each CDP: melas � 
Z�, with Z
eing the array specifying layer acoustic impedances, and mgeo


�*,Sw
*�, with �* and Sw

* being the array of logarithmic porosity
nd logarithmic water saturation.

We fix the impedance low-resolution scale at the limit of the seis-
ic resolution, using 4-ms layers, approximately one-fifth of the

ominant period of our seismic data. For the high-resolution time
iscretization, we use a smaller layer thickness of 1 ms, about 20
imes smaller than the dominant period. Hence, we increase the ver-
ical resolution between our two modeled scales a factor of four
imes. Increasing this factor implies an increase in numerical opera-
ions in proportion to the square of the factor for the optimization so-
ution and in proportion to the factor for the Monte Carlo solution.
he model resolution in this approach accounts for the significant
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
ayer thickness for practical reservoir description and the size of
omputations. Therefore, it is fixed between the seismic and the finer
ell-log resolutions.

etrophysical model

For the relation between total porosity, water saturation, and
coustic impedance, we model acoustic impedance as a random field
onditioned by the total porosity field and water saturation, with a
entral value that is a deterministic petrophysical transform of po-
osity and water saturation f��*,Sw

*� plus multivariate Gaussian de-
iations. We combine two well-known petrophysical relationships
o reveal the influence of porosity and water saturation on acoustic
mpedance. First, we describe the influence of total porosity with a
elation straightforwardly derived from the Wyllie time average
quation for compressional velocity �Wyllie et al., 1956; Hilterman,
001� and the corresponding average for density:

Z��� � Vmatrix�matrix�1 � ��1 � �fluid/�matrix��/�1 � �

� �1 � Vmatrix/Vfluid�� , �13�

ith Z being the layer acoustic impedance; � the layer total porosity;
nd �fluid, �matrix, Vmatrix, and Vfluid the mass density and compressional
elocities for the pure rock matrix and pure fluid, respectively.

Second, we model the fluid compressional velocity with an identi-
y derived from the Wood relation for the bulk modulus �Wood,
955; Hilterman, 2001� and an identity corresponding to density:

1

Vfluid
2 �

Sw
2

Vbrine
2 �

�1 � Sw�2

Vgas
2

� Sw�1 � Sw�� �gas

�brineVbrine
2 �

�brine

�gasVgas
2 
 .

�14�

or fluid density, we have

�fluid�SW� � �gas�1 � SW� � SW�brine. �15�

ith �gas, �brine, Vgas, and Vbrine the gas and brine in situ densities and
ompressional velocities.

By substituting equations 15 and 14 into equation 13, we obtain
ur Wyllie-Wood model for the acoustic impedance. We complete
ur petrophysical transform by making the inverse substitutions of
ater saturation and porosity in terms of logarithmic water satura-

ion and logarithmic porosity. We use this transform as the determin-
stic component of the petrophysical model to forward-calculate the
coustic impedance and to calculate the analytical derivatives for the
acobians in the optimization approach.

Our petrophysical transform is dependent on six parameters —
matrix, �matrix, Vbrine, �brine, Vgas, and �gas — that characterize the matrix
nd fluid acoustic behavior. We calibrate these parameters to well-
og data in the area by least-squares regression of the well-log im-
edance estimates and use these values for all of the area. These pa-
ameters, however, are actually variable in the area and are affected
y other conditions such as the facies. These undetermined effects
n acoustic impedance are accounted for in the random component
f the petrophysical model mdev.
A final issue on the petrophysical modeling is the change of scale

n the impedance, to transform from high-resolution to low-resolu-
ion layer discretization. Wave velocities and reflection coefficients
SEG license or copyright; see Terms of Use at http://segdl.org/
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O6 Bosch et al.
epend not only on medium properties but also on the frequency
ontent of the signal. Different numerical methods can be used to
redict the equivalent elastic properties, given the medium statistical
escription and frequency content, and simple relationships have
een developed for limiting cases. If the wavelength � is much larger
han the typical strata thickness ��d, we have the common Backus
verage expressions. In the opposite case, the ray-theory equations
old. However, these two situations are ideal.

Equivalent elastic-medium parameters lie between the two limit-
ng expressions in most practical cases, and different computation

ethods have been proposed. Some authors �Rio et al., 1996; Gre-
hka, 2003; Stovas andArntsen, 2006� propose that an average of the
wo limiting expressions is convenient in many practical situations.
ere, we link our high- and low-resolution model scales using an up-

caling expression for the impedance:

Zlow res �� �Zi

�Zi
�1 , �16�

ith Zlow res being the equivalent thick-layer acoustic impedance and
i the acoustic impedances of the thin layers regularly sampled in

raveltime. Expression 16 combines common Backus and mass den-
ity depth averages with time conversion in the ray-theory approxi-
ation; the results are intermediate between the ray and effective
edium formulations.

eostatistical model and characterization

The third component of information in this work is geostatistical,
rovided by the well-log constraints to the model parameters. Geo-
tatistical modeling involves several procedures:

� Characterizing the prior mean of the reservoir properties �loga-
rithmic porosity and logarithmic water saturation�

� Characterizing the prior covariance of the reservoir properties
� Calculating the cokriging mean and covariance for the reser-

voir properties
� Characterizing the prior covariance for the petrophysical mis-

fits �impedance deviation from the petrophysical transform�

igure 2. Joint CDP model for acoustic impedance, logarithmic po-
osity, logarithmic water saturation, information components, and
patial relation with well-log and CDP seismic data.
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
� Calculating the cokriging mean and covariance for the petro-
physical transform deviations

n vertical direction, measured here in time, these covariance func-
ions are modeled from the well-log data. The procedure is illustrat-
d in the following section using field well logs. As is common in
eostatistical modeling of reservoirs, we describe lateral covariance
etween the well data and the properties at the estimation point in
eference to structural surfaces previously interpreted from the seis-
ic data to follow the stratification directions.
To produce calculations of reasonable size, we decompose the

olume inversion in a set of independent inversions of single CDP
oint impedance porosity saturation models. Thus, our inverse prob-
em combines the following information in estimating the 1D im-
edance porosity saturation model associated with a CDP: �1� well-
og data at the surrounding wells, �2� seismic data corresponding to
he CDP, and �3� the petrophysical relationship between acoustic im-
edance, total porosity, and gas saturation. Figure 2 shows the joint
D model associated with each trace and the information and data in-
olved in the estimation.

MODEL CALIBRATION TO WELL-LOG DATA

We adjust parameters defining the petrophysical and geostatisti-
al models for optimal description of the properties in the area on the
asis of well-log-estimated properties, using data from two area well
ogs. We first upscale the well-log data to high-resolution model dis-
retization �1-ms sampling� via common effective theory expres-
ions and use the upscaled well-log porosity, water saturation, and
coustic impedance to obtain optimal parameters Vmatrix, �matrix, Vbrine,
brine, Vgas, and �gas for the Wyllie-Wood petrophysical transform. We
chieve this goal by implementing a nonlinear least-squares fitting
f the well-log impedance, adapted to the specific transform func-
ion.

Figure 3 shows plots of the well-log data points and the corre-
ponding surface defining the petrophysical deterministic Wyllie-
ood transform fitted to the data; Figure 3c is a 3D view of the trans-

orm and data points, which correspond to the well-log data used to
onstrain the inversions in the field case �following�. For a closer
ook into data and model compliance, we show crossplots at particu-
ar bands. Our data were clustered in a high-saturation region for
rine-saturated rocks and a variable-saturation region at intermedi-
te porosities that corresponded to the gas-reservoir rocks.

Figure 3a shows the fitting of the petrophysical transform for the
rine-saturated rocks, including samples with saturation larger than
5%. The gray band shows the size of the standard deviation from
he transform used in the statistical model and characterized from the
ell-log data deviations from the transform predictions. On the oth-

r hand, Figure 3b shows a cut of the surface at 30% porosity with the
rojection of well-log data points within the band from 20% to 40%
orosity. The gray band indicates �plus and minus� one standard de-
iation of the impedance from the predicted petrophysical trans-
orm, as characterized and modeled.

To define the parameters of our geostatistical model, we charac-
erized the vertical covariance of the well-log logarithmic porosity
nd logarithmic water saturation. Figure 4a and b shows the experi-
ental covariance as a function of the time lag, calculated from the
ell-log estimates for the two properties sampled at 1-ms time inter-
als, and the corresponding covariance function model fitted to the
ata. For the covariance function, we used a parametric model mix-
ng basic covariance functions: nugget, Gaussian, and exponential
SEG license or copyright; see Terms of Use at http://segdl.org/
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Integrated inversion of reservoir data O7
erms. The corresponding coefficients and parameters of the covari-
nce functions were fitted with a regression procedure to the experi-
ental covariance data. Similarly, we calculated the impedance pre-

icted by the petrophysical transform evaluated at the porosity and
aturation well-log data and computed the corresponding deviations
rom the well-log impedance data.

Figure 4c shows the covariances of the petrophysical relationship
ata deviations and the corresponding covariance function model.
he well-log data show no correlation between water saturation and
orosity. Thus, for our synthetic tests and real case, we use zero prior
ross-covariances between the two properties.
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igure 3. Crossplots of �a� well-log acoustic impedance and water
aturation for porosities of �a� 0.95–1.00 and �b� 0.2–0.4. The dark
ray line shows the petrophysical transform values after calibration
gainst the well-log data. The clear gray bar shows the size of �plus
r minus� one standard deviation of the well-log acoustic impedance
rom the transform. �c� A 3D view of well-log data �black dots� in
coustic impedance, porosity, and water saturation space and the
urface for predicting the acoustic impedance as a function of poros-
ty and water saturation after calibrating the data.
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
The property covariance in lateral direction is not constrained by
he well-log data because wells are vertical in the area. Lateral cova-
iance is subjected to a choice of model and ranges; we use a smooth
aussian covariance model. As is done for reservoir geostatistical
odeling, we use surfaces picked from major seismic continuous

vents to guide the lateral correlation of the medium properties, en-
uring the correlation follows the geometry of the strata. Finally, we
uild the a 3D property covariance function as the product of the ver-
ical and lateral functions. For more information about covariance
unction models, see Isaaks and Srivastava �1989� and Chiles and
elfiner �1999�.

SYNTHETIC EXAMPLES

We perform numerical tests of the inversion technique using the
etrophysical, geostatistical, and seismic source wavelet parameters
elated to our gas reservoir area. Figure 5 shows a joint total porosity,
ater saturation, and acoustic impedance model created following

rtificial structural surfaces and simulated property fields. We locate
as reservoirs in two sand strata as particular targets of the inversion.
rom the property sections �Figure 5a-c�, we calculate the seismic
ata �Figure 5d�, used as observed seismic data for the inversion.
qually, we take the 1D model configuration beneath position
500 m �X1 in the figure� as observed well logs of acoustic imped-
nce, total porosity, and water saturation to condition the inversion.

For comparison, we present the results of the estimated property
elds following three categories of procedures highlighting the in-

igure 4. Experimental covariance in time �gray curve� and the cor-
esponding modeled covariance function �solid black curve� for the
ollowing well-log-derived properties: �a� logarithmic porosity, �b�
ogarithmic water saturation, and �c� deviations of well-log-derived
coustic impedance from corresponding values predicted by the
etrophysical transform of porosity and water saturation.
SEG license or copyright; see Terms of Use at http://segdl.org/
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O8 Bosch et al.
uence of each type of information involved in the inference prob-
em:

� Geostatistical estimation from well data, which corresponds to
the case of no seismic likelihood information in equation 1. In
this case, the result is the cokriging estimate based on the well-
log data with covariances, following the structural directions
interpreted from the seismic section.

� Petrophysical seismic inversion with no conditioning to well-
log data, which corresponds to the case of no well-log spatial
constraint to the model. The result combines the information of
the seismic data with the petrophysical model relating medium
properties. Well-log data are used to build up the global petro-
physical and geostatistical models and to extract the source
seismic wavelet, but not as spatial constraint to the property
fields. As part of the geostatistical model, the expected reser-
voir properties are given as a linear trend fitted to the well data.

igure 5. �a� Acoustic impedance, �b� total porosity, and �c� water
aturation sections used as true properties for the synthetic tests. �d�
he seismic section calculated from the acoustic impedance section
nd used as observed data for the tests. Location of the virtual well
sed to condition the inversions is indicated by X1, with the path
hown as a black dashed line. Locations X2 and X3 indicate CDPpo-
itions used for uncertainty plots in Figure 8, which are also shown
s a black dashed line. The two white dashed lines in �d� indicate the
olygons used to guide the property covariances along the structure.
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
� Petrophysical seismic inversion conditioned to well-log data,
using the complete formulation described here.

Application of the Monte Carlo inversion technique generates
0,000 model realizations for our synthetic case. We start the sam-
ling chain in the cokriging estimation configuration and perturb the
odel configurations by combining the geostatistical simulation and

he Metropolis sampler as described in a previous section. A typical
hi-squared �	 2� seismic residual plot for a CDP trace located at po-
ition X2 indicated in Figure 5 is shown in Figure 6a. In the plot, we
istinguish the burn-in phase, influenced by the initial model, and
he sampling phase, where model configurations satisfy the seismic
bservations within uncertainties. With the optimization technique,
e initiate the iteration algorithm at the cokriging estimates of the
roperties and iterate for optimizing jointly the seismic data misfit,
etrophysical relationships, and prior geostatistical information.
igure 6b shows a plot of the progress of the 	 2 seismic data misfit,
ith the iterations of the optimization technique, at the same loca-

ion X2 of Figure 5.
Figure 7 shows the estimated property fields obtained with the

oint seismic and well-log inversion and the two categories based on
artial information, solved with the optimization method. Results of
he numerical tests show the input of each type of information into
he estimated result and the benefit of combining well-log and seis-

ic information. The geostatistical estimation shown in the first col-
mn of Figure 7 is based on pure extrapolation of the well-log infor-
ation, located at the horizontal position of 2500 m, along the stra-

a. We select a 13-km-long range for the lateral covariance along the
tratification in these tests. The technique successfully extrapolates
he well information following the structural lineation of the strata.
owever, the second gas reservoir is not predicted in the estimation

) c)

) d)

igure 6. Seismic residual evolution with iterations for the �a� Monte
arlo and �b� optimization algorithms applied to the synthetic data,
nd the corresponding plots for the �c� Monte Carlo and �d� optimi-
ation algorithms applied to the field data. The seismic data residuals
re measured in 	 2. Burn-in and sampling phases are indicated for
he Monte Carlo method.
SEG license or copyright; see Terms of Use at http://segdl.org/
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Integrated inversion of reservoir data O9
ecause the true well �path X1 in Figure 5� misses the second gas res-
rvoir.Also, the limits of the first gas reservoir are extrapolated away
rom the true location. This illustrates that pure geostatistical estima-
ion neglects lateral heterogeneities, as expected.

On the other hand, the seismic petrophysical inversion, shown in
he second column, resolves the impedance model at a vertical scale
ommensurate with the seismic resolution, missing thinner strata
resent in the target model. Also, because of the coupled effects of
orosity and water saturation in the acoustic impedance, the inver-
ion resolves with medium accuracy both reservoir parameters:
ome features of the porosity stratification are mapped into the water
aturation estimation, and vice versa. Nevertheless, the marked de-
rease of water saturation corresponding to both reservoirs is identi-
ed clearly. Also, major stratification of the porosity is correct at
eismic scale. Finally, the seismic inversion conditioned to well-log
ata solves many of the limitations of each type of procedure.As can
e seen, each of the properties is better resolved, the two gas reser-
oirs can be identified, and vertical resolution increases in the region
ithin the lateral covariance range of the well-log data.
Similar results were obtained with the Monte Carlo method. For

his method, the estimated fields are the average of the model config-
rations generated in the sampling phase.As explained earlier, an as-
et of Monte Carlo sampling is the many model realizations, allow-
ng straightforward estimation of marginal probabilities on model
arameters or functions of model parameters. Estimated probabili-
ies correspond to frequencies calculated from the set of model con-
gurations sampled by the chain.

a) d)

b) e)

c) f)

igure 7. Acoustic impedance, total porosity, and water-saturation se
og data at well X1, �d-f� petrophysical seismic inversion with no wel
nversion. The conditioning well data are located in the path shown b
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
We show in Figure 8a marginal cumulative probabilities for
coustic impedance, total porosity, and water saturation obtained
ith the petrophysical inversion of seismic data �with no well-log

onditioning� at three different distances from the well, correspond-
ng to locations X1, X2, and X3 in Figure 5. Color plots indicate the
robability of the property’s true value being smaller than or equal to
he property axis value, fully describing the uncertainty of the prop-
rty profiles inferred with the inversion. In our color scale, green
lus clear blue areas approximately demark a 0.9 uncertainty bar.
he figure also shows the true and estimated property profiles for
omparison. Figure 8b is the corresponding probability plots for the
etrophysical seismic inversion conditioned to the well-log data at
osition X1. Comparing this case with the unconditioned inversion,
e can verify �1� smaller uncertainties, �2� uncertainties reducing
ith the distance to the conditioning well log, and �3� higher fre-
uency content in the estimated profiles.

INVERSION RESULTS FOR A GAS RESERVOIR

We apply the inversion method to a stacked and time-migrated
mall-incidence-angle �within 18° from the vertical� seismic data set
n an area of a producing gas reservoir; a section of the seismic data is
hown in Figure 9. The area for the inversion corresponds to a clastic
equence with good lateral continuity affected by small faults and
ild deformation. As indicated, there is no oil presence in the area;

hus, the possible fluids are brine and gas.

g)

h)

i)

estimated using the optimization method: �a-c� cokriging true well-
nditioning, and �g-i� joint seismic and well-log-based petrophysical
ack dashed line.
ctions
l-log co
y the bl
SEG license or copyright; see Terms of Use at http://segdl.org/
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We picked a horizon in the seismic section following the major
tructure of the strata and its small steps to guide the covariance defi-
ition. Two wells that intercept the section correspond to the wells
nd data previously characterized, used to calibrate the petrophysi-
al and geostatistical model. The horizon and position of the two
ells are also indicated in Figure 9. Based on the seismic data and
ell-log-derived impedance, we estimated a source wavelet for the

rea to simulate the seismic data, similar to a method of Lines and
reitel et al. �1985�.
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re 5� for �a� unconditioned seismic petrophysical inversion and �b� s
d �red lines� and the true �black lines� property profiles are superimp
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As explained, the 3D covariance function combines the vertical
ovariance models shown in Figure 4 and a lateral Gaussian covari-
nce model along the reference horizon indicated in Figure 9. Major
eismic events show continuity along the reference structural hori-
on direction for more than 9 km. To account for this continuity, we
dopt a lateral covariance range of 13 km to complete the geostatis-
ical model. If a wider area should be treated or major seismic events
e less continuous than they are here, the lateral covariance of seis-
ic amplitudes along the structural horizon may be characterized
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Integrated inversion of reservoir data O11
nd modeled for constructing the horizontal component of the cova-
iance function, as done for the vertical components in Figure 4.

We present the results of the estimated property fields following
he same three procedures categorized for the synthetic tests: �1�
eostatistical estimation, �2� petrophysical seismic inversion uncon-
itioned to well-log data, and �3� petrophysical seismic inversion
onditioned to well-log data. In these categories, we apply the two
olution methods: Monte Carlo sampling and optimization. Parame-
ers defining the petrophysical and geostatistical models are the
ame for the two solution methods and correspond to the model cali-
ration described previously.

Figure 6c and d shows the progress of seismic data residuals with
terations measured in 	 2 statistic for the CDP model at location X1
Figure 9�. Iterations for the Monte Carlo method �Figure 6c� corre-
pond to steps in the Markov chain associated with perturbations of
he model configurations. Estimated fields and probabilities are cal-
ulated from the set of realizations generated during the sampling
hase of the chain. A similar plot is shown for the optimization ap-
roach �Figure 6d�, with each iteration corresponding to a model up-
ate after constructing and solving the linear system of equations
0–12.

esults with the optimization solution

Property sections obtained with the optimization solution are
hown in Figure 10 and correspond to optimal values: maximum
ombined probability density values obtained by solving equations
0–12 after several iterations, as shown in Figure 6d. The column ar-
angement of the plots corresponds to the geostatistical solution
cokriging�, the seismic inversion with no conditioning to the well-
og W1 data, and the seismic inversion conditioned to the well-log

1 data. For all of the plots, the corresponding well-log properties
re superimposed at well-path locations of wells W1 and W2 for
omparison with the properties estimated with the inversion. Num-
ers at the bottom of the sections indicate the correlation between the
ell log and the inversion-estimated properties for each case.
In Figure 10a-c, the geostatistical estimate shows the extrapola-

ion of the conditioning well logs at position W1 along the structural
irection; the three properties match the well log at the intersection.
roperties progressively tend to the prior mean with increasing dis-

ance from the conditioning well log, e.g., the water saturation at the
as reservoir progressively reduces away from well W1. Compari-
on with the well W2 well-log data shows that major features conve-
iently have been extrapolated in space because the structure is par-
icularly continuous. However, the geostatistical estimation does not
ccount for the location of medium heterogeneities and the magni-
ude of property contrasts imprinted on the seismic amplitude infor-

ation.
For the seismic petrophysical inversion �Figure 10d-f�, there is no

ell constraint; wells are superimposed on the section at their loca-
ions W1 and W2 only for comparison with the inversion results. The
mage shows that the estimated impedance and water saturation have
good match with the corresponding well logs for thick strata, com-
ensurate with the frequency content of the seismic data, as expect-

d; corresponding correlations are shown at the bottom of the plots.
he gas saturation looks continuous between the two wells, and no
dditional gas strata are present, which coincides with independent
roduction information. On the other hand, the low impedance asso-
iated with the gas-bearing sand reservoir is mapped partially into
he porosity field and water saturation. This results from the common
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
nfluence of the two reservoir properties on the acoustic impedance,
n this case overestimating the porosity at the site of the reservoir.
lso, high well-log porosities that correspond to a shale seal located

t approximately 10 ms above the gas reservoir are underestimated.
he correlation of the estimated porosity and the well-log porosity is

ower than correlations obtained for the other two properties for the
nconditional seismic inversion.

The seismic inversion conditioned with the W1 well-log data
Figure 10g-i� improves the match of the estimated properties with
oth wells �conditioning W1 and blind test W2�. Improved correla-
ions are shown at the bottom of the figures for all three model prop-
rties — acoustic impedance, water saturation, and total porosity —
howing that the well-log information contributes to the resolution
cross saturation and porosity, which have coupled effects on the
coustic impedance.Also, the plots reveal the increase in the vertical
esolution for all estimated property fields where thinner strata have
een inferred. The inferred sections are not a plain extrapolation of
he W1 well-log data, as in the case of the geostatistical estimation,
ecause they include the medium lateral heterogeneities imprinted
n the seismic data. The gas saturation shows continuity along the
eservoir.

esults with the Monte Carlo solution

The many realizations produced with the sampling algorithm are
sed to calculate the estimated fields and probabilities for the three
odel properties. Figure 8c shows the progress of seismic data re-

iduals and the length of the sampling chain for the real-case applica-
ion. We used 35,000 iterations of the Monte Carlo sampling algo-
ithm per trace with a burn-in phase of 2000 interations, which pro-
ided 33,000 realizations in the sampling phase of the process. The
stimated property fields obtained with the Monte Carlo method are
imilar to the sections shown in Figure 10 estimated with the optimi-
ation approach. In addition, by constructing the cumulative fre-
uency of the realizations, we estimated the marginal cumulative
robability distribution for each property.

Figure 11a shows the cumulative probability plots for the seismic
etrophysical inversion with no well constraints for three CDPs in
igure 9, giving a complete description of the uncertainty associated
ith the estimate. The color plotted at each point indicates the proba-
ility that the property axis value is greater than or equal to the true
roperty value for the corresponding time. Intermediate plot tones
etween yellow and dark blue can be regarded as marking uncertain-

igure 9. Seismic section that corresponds to a time-migrated stack
f small incidence angles �
18° from the vertical�. Superimposed
re the structural horizon used to guide lateral covariances �dot-
ashed black line�, wells W1 and W2 �dashed line�, and an additional
ocation X1 �also dashed white line� used for probability plots in Fig-
re 11.
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y bars around the estimated value of the property; the plot zone en-
ompassing the green and clear blue areas approximately corre-
ponds to a 0.9 probability error bar. We superimpose the prior prop-
rty field, which is a linear trend adjusted to the well-log data, and the
nversion-estimated field to the probability plot. Two of the locations
orrespond to well sites; for comparison, we superimpose the well-
og-derived property sampled at 1-ms intervals. Correlations be-
ween the well-log and inversion estimates obtained with the Monte
arlo method are shown at the bottom of the plots. Note the appro-
riate location and magnitude of the water-saturation prediction re-
ated to the gas reservoir and the lower frequency content of the seis-

ic inversion result, compared with the well log sampled at 1 ms.
Figure 11b shows the same probability plots corresponding to the

esults of the seismic petrophysical inversion constrained with well-
og data corresponding to well W1. The estimated result and the pri-
r profiles, which in this case correspond to the cokriging estimate,
re superimposed; at the conditioning well W1 and the blind test
ell W2, the well-log-derived properties are also superimposed. We

an see from these probability plots that the uncertainty is much
maller at site W1 and increases progressively for sites X1 and W2,
s expected.

A few other features are worth mentioning. First, near the condi-
ioning well, the estimated properties closely approximate the well-
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igure 10. Matrix of plots corresponding to results of the optimization
ion. �a-c� Cokriging of well data along the structural horizon. �d-f� S
itioning. �g-i� Sections estimated by the seismic petrophysical inve
erived properties are superimposed on the corresponding inversion
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og data. Second, our model allows for deviations of the estimated
eld from the well-log data attributable to the nugget terms modeled

n the covariance functions, which implies an amount of indepen-
ence between the well data and the property field estimated at the
earest CDP. Third, locations and magnitudes of water saturation are
dequate at blind test well W2. Fourth, porosity prediction improves
rom the one corresponding to the unconditioned seismic inversion
hown in Figure 11a. Fifth, the vertical resolution of the estimated
roperties improves.Also, the location and magnitude of the gas sat-
ration at the reservoir level adequately match the well W2 satura-
ion derived from the well-log data.

DISCUSSION

We would like to highlight different assumptions and simplifica-
ions made when implementing the method. The petrophysical mod-
l is not general purpose and has been developed specifically for gas
eservoirs without oil. Different petrophysical models could be im-
lemented, depending on the reservoir situation. Gassmann fluid
ubstitution relations, for instance, could improve the modeling of
artial saturation effects on acoustic impedance. A review of com-
on predictive relationships between porosity and compresional-
ave velocity, and their combination with Wood’s emulsion equa-
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ion, is given in Mavko et al. �2003� and Brereton �1992�. With any
hoice of relationships, validation and calibration of the petrophysi-
al transform with the actual well-log data from the area are needed.
lso, more complete petrophysical models can be enhanced to in-

lude other parameters, such as facies, to improve deterministic pre-
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igure 11. Cumulative marginal probabilities for the model propertie
onditioned seismic petrophysical inversion and �b� seismic petroph
1, and W2 �see Figure 9�. The estimated property profiles �red lines
rofiles �black lines� are superimposed.
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iction of the elastic parameters. In cases where matrix lithology ef-
ects are particularly relevant or fluid-property contrasts are less
arked, as in our case, we suggest extending the application to in-

ert multiple offset �or angle� seismic data to estimate a more com-
lete set of reservoir properties.
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An important advantage of our general petrophysical formulation
s that we use a mixed model, combining petrophysical deterministic
elationships and random deviations. Well-log statistics may not be
epresentative of the reservoir because of limits on the well numbers
r because wells are not drilled randomly. Thus, a purely empirical
t of a function to the well-log data is sensible with poor data cover-
ge. In our model, we use petrophysical relationships calibrated to
he well-log data for more robust modeling, consistent with common
etrophysical knowledge. On the other hand, none of the determinis-
ic petrophysical transforms fully explains the relation between the
ariables. Thus, describing well-data deviations from the calibrated
elationships allows us to account for the variability of medium
roperties from these relations.

Upscaling recipes and relationships are a matter of discussion
Lindsay and Van Koughnet, 2001; Liner and Fei, 2007�. Well-
nown situations correspond to the two extremes in wavelength and
eterogeneity-size ratios, given by the effective media and ray theo-
ies. However, behavior in many common cases is more complicated
nd involves a combination of the two phenomena. In real cases, we
ave a distribution of wavelength and medium heterogeneity sizes.
n intermediate cases, dispersion and apparent attenuation can be ob-
erved, and different approaches have been proposed �Chapman et
l., 2006�. In our case, the dominant period is approximately 20
imes larger than the high-resolution model layer thickness; there-
ore, rescaling to a seismic resolution layering is required.

We rescale between our low and high model resolution scales di-
ectly in the impedance. This is convenient in our formulation be-
ause impedance is the elastic parameter in our model, whereas be-
ween the original well-log sampling and the high-resolution model
cale, we use common effective media expressions. Our upscaling
xpression for impedance combines ray and effective media consid-
rations and produces results within the two bounds. For the scales
e relate in our synthetic and real implementations, our tests with

he actual data of the area show that differences are negligible be-
ween the effective media average, the ray theory average, and our
ntermediate model average of the impedance. However, we formu-
ate this issue for generality of the method because it relates the seis-

ic and subseismic scales. In different conditions of model-time
ampling, source-frequency composition, or variability of medium
roperties, the difference in the smoothing approach used for the
coustic impedance could be significant.

Because effects of total porosity and gas saturation in acoustic im-
edance are coupled, their estimation could be unresolved from the
ole information rendered by the near-vertical incidence-angle seis-
ic data. The additional information provided by the nonlinear

etrophysical model and the geostatistical characterization of reser-
oir properties contribute to the resolution of the two properties.
owever, as shown in the synthetic tests for the unconditioned seis-
ic petrophysical inversion, some features of high gas saturation are
apped partially as high porosities, and vice versa. The coupled ef-

ect is given at the level of the petrophysical model because the two
roperties are uncorrelated at the level of the prior statistical infor-
ation. Conditioning the inversion to well-log data largely contrib-

tes to resolving the ambiguity resulting from the petrophysical cou-
led effect of the two reservoir properties. On the other hand, plain
eostastistical estimation �cokriging� based on the well-log data
isses information between the wells carried by the seismic data and

elated with strata heterogeneities and structural features of major
nterest in reservoir description. The combination of well-log and
Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to 
eismic inversion builds on the corresponding assets of each type of
nformation to estimate the property fields better.

Another issue of reservoir characterization is the possibility of de-
ineating thin strata. Because of the lateral covariance in the geo-
tatistical model, the high-resolution well-log data extrapolation
long the structural directions contributes to the property-field esti-
ates. Joint seismic and well-log inversion improves vertical reso-

ution as a result of the contribution of the well-log data. This is not
articularly important for the gas-bearing sand, which has a layer
hickness commensurate with the seismic dominant wavelength, but
t is clear for other thinner strata. In particular, the acoustic imped-
nce and the porosity sections resolve thin stratification that matches
orresponding thin strata at the blind test well W2, located more than
km from the conditioning well W1. Correlation is larger and rms

eviation is smaller for the joint seismic and well-log-based inver-
ion than for each of the disjoint components for geostatistical and
eismic information. Similar results on improving the joint vertical
esolution are shown in the synthetic tests.

Because they are based on the same general formulation and as-
umptions, the results obtained from the Monte Carlo sampling and
ptimization methods are similar in the method’s major features.
inor differences result from particularities of the two-solution ap-

roach. Concerning execution times, it is important to notice that the
umber of iterations shown in Figure 6 for the Monte Carlo and opti-
ization methods cannot be used straightforwardly to compare the

ssociated computation effort. A single iteration of the Monte Carlo
ethod is a very fast process, whereas an iteration of the optimiza-

ion method requires solving a large system of equations. For the re-
ults shown here, the optimization approach is faster by a factor of 20
ompared with the Monte Carlo approach for estimating medium
roperties. However, the Monte Carlo method describes property
robabilities �uncertainties� in addition to property estimates.

CONCLUSION

We have developed a general formulation for inverting seismic
ata under well-log constraints derived from petrophysical and geo-
tatistical models. It allows a joint description and inference of reser-
oir- and elastic-medium properties. The formulation unifies the
teps of geophysical and petrophysical data inversion within a quan-
itative scheme, accounting for nonlinear relationships, conditioning
f estimated property fields to well-log measurements, and combi-
ation of uncertainties. We describe solution methods for two major
pproaches, sampling and optimization, and illustrate the techniques
ith a synthetic example and an application to field data from a gas

eservoir. In this specific setting, we invert seismic near-vertical in-
idence-angle and well-log data to estimate gas saturation, porosity,
nd acoustic impedance jointly.

Results of the numerical tests are coherent with the hypotheses of
he method. They show that geostatistical interpolation commonly

isses laterally discontinuous features, whereas petrophysical seis-
ic inversion �without well conditioning� is limited in frequency ac-

ording to the seismic signal. Also, the latter is limited in resolving
eservoir properties �porosities and saturations�, which can be cross-
apped partially for some events because of their coupled effect on

coustic impedance. These issues are improved in the petrophysical
eismic inversion conditioned with well-log data. In the field case,
e base our inference parameters on calibrating the petrophysical

ransform and the geostatistical characterization of the well logs and
ransform deviations.
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Results of acoustic impedance, water saturation, and porosity
ointly honor the seismic data, well logs, and petrophysical model
sed for the area. We successfully resolve the property fields delin-
ating gas saturation at the level of the reservoir. The seismic petro-
hysical inversion constrained by well-log data combines assets of
he two types of information: increased vertical resolution close to
he well, estimated fields that conform to the well logs at intersec-
ions, no smoothing of lateral resolution, and adequate joint resolu-
ion of water saturation and porosity.
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