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ABSTRACT

Hydrocarbon reservoirs are characterized by seismic, well-
log, and petrophysical information, which is dissimilar in spatial
distribution, scale, and relationship to reservoir properties. We
combine this diverse information in a unified inverse-problem
formulation using a multiproperty, multiscale model, linking
properties statistically by petrophysical relationships and condi-
tioning them to well-log data. Two approaches help us: (1) Mark-
ov-chain Monte Carlo sampling, which generates many reservoir
realizations for estimating medium properties and posterior mar-
ginal probabilities, and (2) optimization with a least-squares iter-
ative technique to obtain the most probable model configuration.
Our petrophysical model, applied to near-vertical-anglestacked

seismic data and well-log data from a gas reservoir, includes a de-
terministic component, based on a combination of Wyllie and
Wood relationships calibrated with the well-log data, and a ran-
dom component, based on the statistical characterization of the
deviations of well-log data from the petrophysical transform. At
the petrophysical level, the effects of porosity and saturation on
acoustic impedance are coupled; conditioning the inversion to
well-log data helps resolve this ambiguity. The combination of
well logs, petrophysics, and seismic inversion builds on the cor-
responding strengths of each type of information, jointly improv-
ing (1) cross resolution of reservoir properties, (2) vertical reso-
lution of property fields, (3) compliance to the smooth trend of
property fields, and (4) agreement with well-log data at well
positions.

INTRODUCTION

The 3D characterization of hydrocarbon reservoirs requires inte-
grating information across medium properties at different spatial
scales and distributions: (1) high-resolution well-log information at
irregularly distributed well paths, (2) uniformly sampled informa-
tion from 3D seismic data with low vertical resolution, (3) petro-
physical information relating reservoir properties and scales, and (4)
geostatistical information relating property fields in space. Common
procedures rely on stepwise processing of the different types of data
and information (seismic, well log, petrophysical, and geostatisti-
cal) and their combination in various work flows. The goal of our
work is to describe a method to integrate this information into a uni-
fied inversion scheme, accounting for nonlinear relations across me-

dium properties and data as well as the combination of uncertainties
related to the various information components.

The combination of well-log data and seismic information for es-
timating reservoir and elastic medium properties has motivated the
development of different techniques. In Doyen (1988), well-log po-
rosities are extrapolated by correlation with the acoustic impedance
estimated from seismic data, using the well-known cokriging tech-
nique. An additional step in integrating seismic data within geo-
statistical methods is described by Haas and Dubrule (1994), who
propose a method to generate acoustic impedance realizations con-
ditioned to the well-log data and seismic stacked data simulated by
1D convolution of the model reflectivity. Also, Torres-Verdin et al.
(1999) focus on the problem of generating realizations of acoustic
impedance and discrete facies types jointly honoring stacked seis-
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02 Boschetal.

mic data and well logs using a simulated annealing technique. Inte-
gration of well-log data and seismic data partially stacked at differ-
ent incidence angle ranges is described by Contreras et al. (2005) for
joint estimation of elastic medium parameters and facies types. In
Gonzalez et al. (2008), facies types also are related with seismic data
using a multipoint geostatistical model that honors spatial well con-
straints.

We can circumscribe these works to the field of geostatistical in-
version of seismic data. The advantages of geostatistical inversion
related to plain geophysical inversion are manifold: estimated prop-
erty fields match well-log data at well location, seismic data are hon-
ored, and field resolution increases along the well direction in the re-
gion within the range of spatial property correlation.

Effort has been directed to integrate petrophysical and geophysi-
cal inversion within a common inference formulation. In this ap-
proach, the seismic data are inverted under the constraint of a petro-
physical model and prior information; the result is a joint estimate of
elastic and reservoir (e.g., porosity, facies, fluid) properties. In
Bosch (2004), a statistical formulation for the joint inversion is de-
scribed and numerical examples are presented for the case of invert-
ing short-offset seismic data to estimate acoustic impedance and po-
rosity. The relation between impedance and porosity is embodied in
a petrophysical mixed model (deterministic mean and random devi-
ations) calibrated to well-log data; an optimization method is used to
produce a linear system of equations for the joint porosity and im-
pedance model updates. Bosch et al. (2007) describe a similar for-
mulation to solve the inference problem with a sampling Monte Car-
lo approach, providing an application to a field case. Also, Spikes et
al. (2007) focus on constraining a seismic inversion with a petro-
physical model calibrated to well-log data and estimating elastic and
reservoir parameters from two constant-angle stacks, showing a
field case. Larsen et al. (2006), Buland and Omre (2006), and Gun-
ning and Glinski (2007) describe similar methods illustrated by syn-
thetic tests.

Joint inverse problem
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Figure 1. Model parameters and data involved in the inference prob-
lem—information components and their relations. Thin black ar-
rows indicate the forward-modeling sense. Thick arrows indicate the
inverse sense.

We can group these works in the field of petrophysical inversion
of seismic data. The advantages of petrophysical inversion com-
pared to plain seismic inversion are also manifold: reservoir proper-
ties are estimated in addition to elastic properties, relations across
medium properties honor the petrophysical model, and prior infor-
mation constraining the reservoir properties holds. Other ways to
combine seismic and petrophysical information follow a two-step
process: (1) calculating seismic attributes or inverting the seismic
data and (2) using these results within a petrophysical statistical
model to estimate reservoir parameters. Work by Eidsvik et al.
(2004), Bachrach (2006), Mukerji et al. (2001), Saltzer et al. (2005),
and Sengupta and Bachrach (2007) is based on this approach.

Our work extends the method of petrophysical inversion de-
scribed by Bosch (2004) and Bosch et al. (2007) to include well-log
data constrained on the basis of a geostatistical model, combining
benefits of the geostatistical and petrophysical approaches and inte-
grating surface seismic data, well-log data, petrophysics, and geo-
statistics. We parameterize the model in two scales to address the dif-
ferent resolution of well logs and seismic data, with a scale relation
between them based on petrophysical change of support transforms.
Effective medium theory (Backus, 1962; Schoenberg and Muir,
1989) describes averaging functions to obtain the elastic medium
parameters at seismic resolution from the corresponding parameters
at finer resolution; it also encompasses the full anisotropic elastic
stiffness tensor parameters. Impedances, for instance, commonly are
lower at seismic scale than the corresponding impedances measured
at well-log scale. Ray theory, on the other hand, provides averaging
functions for the properties, assuming high-frequency propagation.

The two formulations correspond to the upper and lower limits of
the ratio between the wavelength and the characteristic thickness of
the strata. Behavior at intermediate ratios is bounded approximately
by the effective media and ray-theory results, depending on factors
such as the statistical spatial characterization of the heterogeneities
and the actual frequency composition of the signal as shown by mod-
eling and laboratory tests (Mukerji, 1995; Grechka, 2003; Stovas
and Arntsen, 2006). In many practical applications to reservoirs, an
intermediate recipe combining the two bounds is recommended (Rio
et al., 1996). Here, we use an upscaling formulation of the imped-
ance that lies between these two limits.

We describe our methods, characterize the well-log data to cali-
brate our petrophysical and geostatistical models, and apply two dif-
ferent inversion techniques — sampling and optimization — to seis-
mic data from a gas reservoir area. For comparison, we show the re-
sults obtained from the seismic petrophysical inversion with no well
conditioning, the plain geostatistical estimation, and the seismic in-
version conditioned by the well-log data.

THEORY AND METHOD

The joint model parameter array is a composition, m = (M,
m,,;), of parameters describing the reservoir property fields m,,, and
parameters describing the elastic-property fields m,,,. In addition,
the elastic properties are described at two different vertical scales:
(1) high-resolution parameters linked with the well-log information
and (2) low-resolution parameters according to the vertical resolu-
tion of the seismic data. Figure 1 describes the model parameters, the
data subspaces, the information involved in the problem, and their
relations.
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Statistical formulation

The knowledge about medium parameters is described with a
probability density function (PDF) that combines the different types
of information and data considered. The combined probability den-
sity is given by the product of three factors that cast the types of in-
formation included in our problem (Bosch, 1999):

O'(melas’mgeo) = CLseis(melas) W(me]as|mgeo) pgeo(mgeo)-

geophysics petrophysics geostatistics

1

The PDF pgeo(mgeo) describes the prior geostatistical information( ir)l
the reservoir property fields, including the well-data constraints. The
conditional probability density 77 (m,,my.,) is a petrophysical like-
lihood function, based on the petrophysical model that predicts the
elastic properties from the reservoir properties. In addition, this fac-
tor embodies geostatistical constraints of the elastic properties; it
measures the probability of the elastic-property fields given a partic-
ular reservoir field configuration and well-log measurements. The
factor Ly (m,,) is the geophysical likelihood function that mea-
sures the proximity between the observed and calculated seismic
data. It depends on the elastic-property field parameters. We model
each of the factors of the combined probability density with multi-
variate parametric functions and implement solution methods by
sampling and optimization approaches.

As common in geostatistical formulation, property fields are mod-
eled as a multidimensional random variable, with components being
the values of the properties at a given set of points in the medium vol-
ume. We model the reservoir-property fields, prior to the well-log
constraints, with a Gaussian multivariate prior probability density.
Conditioning the Gaussian property field to known values of corre-
lated properties at a given set of points (here, the well-log estimates
of the property field) results in a random Gaussian field with proba-
bility density

T
mgeo krig)

mgeo krig):|5 (2)

Pgeo(Myeo) = ¢ exp[ —1/2(mye, —

X Cge; krig(mgeo -
where my, ki, and Cye, ki are the simple cokriging estimate and co-
variance that result from the geostatistical interpolation of the well-
log data. For a review on geostatistical estimation and conditional
simulation, see Isaaks and Srivastava (1989), Chiles and Delfiner
(1999), and Dubrule (2003).

In our model, the elastic-medium properties depend on the reser-
voir properties. To describe their relationship, we use a mixed model
superimposing a deterministic petrophysical transform f(m,,) for
the central trend and random deviations from the transform my,,
= f(mg,) + mgy,. We also call petrophysical misfits the deviations
my,, of the elastic properties from the corresponding prediction of
the petrophysical transform of the reservoir parameters. Before con-
straining the property field with the well-log measurements, we
model the petrophysical misfits with a multivariate Gaussian proba-
bility density. Parameters of the Gaussian density, such as the covari-
ance function, can be characterized and modeled from the well-log
data.

To condition the elastic parameters to the well-log observations,
we constrain the elastic parameter deviations from the petrophysical
transform to the corresponding deviations at the well points. The

constraint field is also Gaussian and is given by the probability den-
sity:

(P(mdev) = exp[_ 1/2(Indev — Myey krig)T
X Cyov krig(Maey — Mgy krig) ], (3)

with mye, i, and my, i, the simple cokriging estimate and covari-
ance for the elastic-property deviations from the petrophysical trans-
form. By substituting the petrophysical deviations mg,, = Mg
— f(m,,) in equation 3, we have the expression for the petrophysi-
cal likelihood term constrained to the well-log measurements:

71-(nlelashngeo) = eXP[_ 1/2(nlelas - f(mgeo)
— Myey krig)TC(ie\} krig(melas - f(mgeo)
— Mygey krig)]- (4)

The function provides a large likelihood for the model configura-
tions that jointly honor well-log and petrophysical information.

The third factor in the combined probability density (equation 1)
is a seismic likelihood. It is defined as a Gaussian function of the de-
viations of the observed seismic data d,;, and the seismic data calcu-
lated from the model configuration d.,. The latter depends on the
function that simulates the seismic response of the model d.,
= g(m,,,m,,), commonly a nonlinear function. Thus, we model
the geophysical likelihood with the expression

L(melas) = exp[_l/z(g(melas) - dobs)T
X C(;all (g(melas) - dobs)]’ (5)

with Cg, being the data covariance matrix. In our particular case, the
function g(my,,) involves a scale transformation. It is the concatena-
tion of two functions: gg.je(Mejes) = My 1owres fOr upscaling the elas-
tic property model parameter from the high-resolution model to the
low-resolution model (at seismic scale) and the forward function
calculating the seismic data, g..is(Meis 1oures) = dear-

Modeling the geophysical likelihood by equation 5, the petro-
physical likelihood by equation 4, and the prior probability density
on the reservoir parameters by equation 2 fully defines the combined
probability in equation 1. The combined probability depends on the
seismic observed data, functions f(m,,) and g(m,,,), solving the de-
terministic petrophysical and geophysical forward problems corre-
spondingly—the well data from the cokriging estimates and covari-
ances of the reservoir fields and the petrophysical deviation field,
and reservoir data from prior densities.

Different strategies can be adopted to produce model configura-
tions describing the information summarized by the combined prob-
ability density of equation 1; two major approaches are optimization
and sampling. The first searches for a model configuration that maxi-
mizes the combined PDF; the second explores the model space pro-
ducing a large set of joint model (reservoir elastic properties) real-
izations in proportion to the combined probability.

Probability estimation by Monte Carlo sampling

Following the sampling approach, we implement a Markov-chain
algorithm adapted to the relation between parameters and the specif-
ic structure of the posterior probability density in equation 1, com-
bining multivariate Gaussian, Gibbs, and Metropolis sampling tech-
niques. Given a current model configuration, the next configuration
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in the chain is generated in the following manner:

1)  Asetof parameters of the reservoir model is modified to gener-
ate a candidate Gaussian multivariate realization following the
prior probability density for the reservoir parameters in expres-
sion 2. The candidate configuration is a realization of the
cokriging probability density, honoring the well-log con-
straints on the reservoir properties.

2)  Sampling is extended to the elastic parameter space by evaluat-
ing the deterministic petrophysical transform and adding ran-
dom multivariate Gaussian realizations of the petrophysical
misfit.

3) The geophysical likelihood of the candidate realization is cal-
culated by upscaling the elastic-property fields, computing the
reflection coefficients, convolving the reflectivity series with
the source function, and comparing the predicted seismic am-
plitudes with the observed amplitudes at the corresponding
common depth point (CDP), as in equation 5.

4)  The Metropolis rule is used to accept or reject the candidate
model realization according to the likelihood ratio with the cur-
rent realization in the chain. The acceptance probability is giv-
en by

p = min[LL(mcand) /L(mn)]’ (6)

where m,,,4 is the candidate configuration and m,, is the current
model configuration. When the candidate model configuration is re-
jected, the current model stands for the next step in the sampling
chain,m,,;, = m,,.

The process repeats for the next step of the chain and iterates; the
procedure warrants convergence of the chain to the combined proba-
bility density in equation 1. Hastings (1970), Geyer (1992), Smith
and Roberts (1993), Tierney (1994), Mosegaard and Tarantola
(1995), Bosch (1999), and Bosch et al. (2007) provide additional in-
formation on Markov-chain Monte Carlo sampling methods.

Objective function and optimization

The optimization approach searches for a model configuration
that maximizes the combined probability density. Substituting the
different factors in the combined probability of equation 1 and
grouping their exponents in the objective function § = Sy, + Seias
+ Sqis, With

-1

— _ T _
Sgeo - 1/2(mgeo mgeo krig) Cgeo kﬁg(mgeo

mgeo krig) ’

(7

Selas = l/z(melas - f(mgeo) - kdev krig)T
X Cd_e\{ krig(melas - f(mgeo) — Myey krig)], (8)

and

Sseis = 1/2(g(melas) - dobs)TCd_atl(g(melas) - dobs)’ (9)

the combined probability density can be written in terms of the ob-
jective function as o (M, Mye,) = ¢ exp[ —S]. A maximum of the
probability density corresponds to a minimum of the joint objective
function S. Therefore, the solution of the optimization problem con-
sists of searching for the joint model configuration that minimizes
the objective function, jointly satisfying the proximity between (a)

the reservoir model configuration and the reservoir-property esti-
mates obtained from the geostatistical interpolation of the well-log
data, (b) the petrophysical relationship residuals and corresponding
residuals interpolated from the well-log data, and (c) the calculated
and observed seismic data.

We use Newton’s method to develop an iterative procedure for up-
dating the joint model configuration (physical and reservoir parame-
ters) to converge to a local minimum of the misfit function. Given a
current joint model configuration m, at iteration step n, Newton’s
method requires solving a linear system of equations A Am = b to
obtain the model update Am = m,,,;, — m,, where A is the curva-
ture matrix of the objective function and b is the steepest-descent di-
rection:

~ (I Cyeo 1igF "G'C, G )
0 I+ (Cdev krig + FCgeo krigFT)GTC(;lth ’
(10)
Am
Amz( g) (11)
Amphys

My, frig — Mgeo T Ceo krigFTGTCd_atl(dobs — g(my,))
b = | f(mg,) — mpype + Myey i + FlMgeq g — Meeo)
+ (FCyep wigF" + Coey krig)GTCd:nI (dops — glmy))
(12)

In expressions 10 and 11, G = (dg/dm,,) and F = (df/dm,,,) are
the Jacobian matrices of g(my,,) and f(m,,), respectively. In our
case, the function g(m,,) is the concatenation of the functions
Eocate(Mepys) = My 1owres fOr upscaling the elastic-property model pa-
rameter from the high-resolution model to the low-resolution model
(at seismic scale) and the forward function calculating the seismic
data g.is(Meyy 1owers) = dea- Therefore, the Jacobian of the complete
function g(Mgy,) = Geis®Gcare 18 the product of the corresponding
Jacobian matrices G = Gy Gyis, With Gyae = (Mg jowres/
Mgy and Gis = (98eis/ MMy 10wres). The function accounting for
the change of scale depends on the specific elastic parameters. In our
implementation, we compute the Jacobian matrices by analytical
differentiation of the functions involved. The curvature matrix and
the steepest-descent direction are derived from the gradient and Hes-
sian of the objective function given by equations 7-9; a description
of a similar derivation, for the case of the petrophysical seismic in-
version unconditioned to well-log data, is given in Bosch (2004).

SEISMIC, PETROPHYSICAL, AND
GEOSTATISTICAL MODELING

Modeling the petrophysical relationships, property geostatistics,
and seismic data depends on the setting of the problem. We consider
here the case of inverting near-vertical-angle seismic stacked and
time-migrated data, which we simulate as zero-offset seismic data
reflected in a horizontally layered medium. For each common depth
point (CDP), we parameterize the medium in time as a series of ho-
mogeneous horizontal layers described by the acoustic impedance
as the elastic parameter related with the seismic observations. The
seismic signal is modeled by convolving the reflectivity series corre-
sponding to the acoustic impedance model with a source wavelet,
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which is estimated at the well-log positions. The choice of acoustic
impedance as the physical parameter in the joint model is straight-
forward from its direct relation, with seismic reflected amplitudes at
near-incidence angles.

Model parameters

For modeling the reservoir properties related to acoustic imped-
ance, we describe rock total porosity and pore fluid jointly. Our
methods are applied in the setting of a gas reservoir located in clastic
strata. No oil is present in the area; the fluid system includes only gas
and brine. Hence, the description of the fluid involves only one pa-
rameter, which we take as water saturation S,,. Gas saturation is the
complement to the unit S, = 1 — §,, of the water saturation in this
case. Our justification for this choice of reservoir parameters is two-
fold: (1) total porosity and water saturation are properties of major
interest for reservoir description and management and (2) both prop-
erties strongly relate to acoustic impedance.

We build a petrophysical model to cast these relations, calibrated
to the local well-log data. In this application, we do not include rock
facies in the property model, which also influences acoustic imped-
ance. We include facies and other effects on acoustic impedance in a
random model characterizing the deviations from the petrophysical
relationship, based on model porosity and gas saturation. A more
complete petrophysical model including facies along with porosity
and water saturation is beyond the scope of this work; it would be
suggested for the case of inverting multiple angle stack ranges (or
multiple offsets) instead of the inversion limited here to the near-ver-
tical-angle data. In this case, improvement in resolution of reservoir
properties should result from the information on shear rock behavior
embodied in multiangle measurements.

In formulating the geostatistical modeling and inversion, we have
made extensive use of Gaussian statistical distributions. Therefore,
for the mathematical computations indicated in the previous section,
we do not describe porosity and water saturation directly as model
parameters. Being bounded properties, they are incompatible with
Gaussian assumptions. We transform to the logarithmic porosity ¢*
= In[¢/(1 — @)], where ¢ is porosity, and the logarithmic water
saturation S, = In[S,/(1 — S,)], which are unbounded. Inverse
transforms are, correspondingly, ¢ = exp[ ¢*]/(1 + exp[¢*]) and
S, = exp[S:]/(1 + exp[S-]). The well-log data actually verify that
the transforms improve normality of the distribution; further im-
provement could be obtained with a complementary normalization
transform (see Bosch 2004 for a discussion of the logarithmic trans-
form). In summary, our model parameters are the layer acoustic im-
pedance, logarithmic porosity, and logarithmic water saturation,
specified at regular time intervals for each CDP: m,, = {Z}, with Z
being the array specifying layer acoustic impedances, and m,,
= {¢*,S, "}, with ¢* and S, * being the array of logarithmic porosity
and logarithmic water saturation.

We fix the impedance low-resolution scale at the limit of the seis-
mic resolution, using 4-ms layers, approximately one-fifth of the
dominant period of our seismic data. For the high-resolution time
discretization, we use a smaller layer thickness of 1 ms, about 20
times smaller than the dominant period. Hence, we increase the ver-
tical resolution between our two modeled scales a factor of four
times. Increasing this factor implies an increase in numerical opera-
tions in proportion to the square of the factor for the optimization so-
lution and in proportion to the factor for the Monte Carlo solution.
The model resolution in this approach accounts for the significant

layer thickness for practical reservoir description and the size of
computations. Therefore, it is fixed between the seismic and the finer
well-log resolutions.

Petrophysical model

For the relation between total porosity, water saturation, and
acoustic impedance, we model acoustic impedance as a random field
conditioned by the total porosity field and water saturation, with a
central value that is a deterministic petrophysical transform of po-
rosity and water saturation f(¢*,S,,*) plus multivariate Gaussian de-
viations. We combine two well-known petrophysical relationships
to reveal the influence of porosity and water saturation on acoustic
impedance. First, we describe the influence of total porosity with a
relation straightforwardly derived from the Wyllie time average
equation for compressional velocity (Wyllie et al., 1956; Hilterman,
2001) and the corresponding average for density:

Z(¢) = Vmalrixpmalrix[l - (b(l - pﬂuid/pmatrix)]/[l - ¢
X (1 - Vmatrix/vﬂuid)]’ (13)

with Z being the layer acoustic impedance; ¢ the layer total porosity;
and Pauigs Prmauixs Vinauixs A0 Viyyiq the mass density and compressional
velocities for the pure rock matrix and pure fluid, respectively.
Second, we model the fluid compressional velocity with an identi-
ty derived from the Wood relation for the bulk modulus (Wood,
1955; Hilterman, 2001) and an identity corresponding to density:

2
[ (1-s5,)?
2 2 2
Vﬂuid Vbrine Vgas
+ Sw(l _ SW) pgds + Phbrine

2 2
Porine Vbrine Pgas Vgas

(14)

For fluid density, we have

pfluid(SW) = pgas(1 - SW) + SwPbrine- (15)

With Pgass Porines Veass a0d Viine the gas and brine in situ densities and
compressional velocities.

By substituting equations 15 and 14 into equation 13, we obtain
our Wyllie-Wood model for the acoustic impedance. We complete
our petrophysical transform by making the inverse substitutions of
water saturation and porosity in terms of logarithmic water satura-
tion and logarithmic porosity. We use this transform as the determin-
istic component of the petrophysical model to forward-calculate the
acoustic impedance and to calculate the analytical derivatives for the
Jacobians in the optimization approach.

Our petrophysical transform is dependent on six parameters —
Vimatrixs Pmatrixs Vorines Porines Veas> ad pgqs — that characterize the matrix
and fluid acoustic behavior. We calibrate these parameters to well-
log data in the area by least-squares regression of the well-log im-
pedance estimates and use these values for all of the area. These pa-
rameters, however, are actually variable in the area and are affected
by other conditions such as the facies. These undetermined effects
on acoustic impedance are accounted for in the random component
of the petrophysical model mge,.

A final issue on the petrophysical modeling is the change of scale
in the impedance, to transform from high-resolution to low-resolu-
tion layer discretization. Wave velocities and reflection coefficients

Downloaded 13 Apr 2009 to 200.44.243.220. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



06 Boschetal.

depend not only on medium properties but also on the frequency
content of the signal. Different numerical methods can be used to
predict the equivalent elastic properties, given the medium statistical
description and frequency content, and simple relationships have
been developed for limiting cases. If the wavelength A is much larger
than the typical strata thickness A >>d, we have the common Backus
average expressions. In the opposite case, the ray-theory equations
hold. However, these two situations are ideal.

Equivalent elastic-medium parameters lie between the two limit-
ing expressions in most practical cases, and different computation
methods have been proposed. Some authors (Rio et al., 1996; Gre-
chka, 2003; Stovas and Arntsen, 2006) propose that an average of the
two limiting expressions is convenient in many practical situations.
Here, we link our high- and low-resolution model scales using an up-
scaling expression for the impedance:

VA
Zigw res = _11 5 (16)
sz

with Z,,,, ., being the equivalent thick-layer acoustic impedance and
Z; the acoustic impedances of the thin layers regularly sampled in
traveltime. Expression 16 combines common Backus and mass den-
sity depth averages with time conversion in the ray-theory approxi-
mation; the results are intermediate between the ray and effective
medium formulations.

Geostatistical model and characterization

The third component of information in this work is geostatistical,
provided by the well-log constraints to the model parameters. Geo-
statistical modeling involves several procedures:

1) Characterizing the prior mean of the reservoir properties (loga-
rithmic porosity and logarithmic water saturation)

2) Characterizing the prior covariance of the reservoir properties

3) Calculating the cokriging mean and covariance for the reser-
voir properties

4)  Characterizing the prior covariance for the petrophysical mis-
fits (impedance deviation from the petrophysical transform)

CDP
Well 1 YV Well2
isillog \4 v Well lo i
Z ¢* SVT/ Z ¢ SW
Seismic
N < information #
S ’
_Geostati_stical Z, ¢Sy Geostatistical
information information
CDP joint
model

Figure 2. Joint CDP model for acoustic impedance, logarithmic po-
rosity, logarithmic water saturation, information components, and
spatial relation with well-log and CDP seismic data.

5) Calculating the cokriging mean and covariance for the petro-
physical transform deviations

In vertical direction, measured here in time, these covariance func-
tions are modeled from the well-log data. The procedure is illustrat-
ed in the following section using field well logs. As is common in
geostatistical modeling of reservoirs, we describe lateral covariance
between the well data and the properties at the estimation point in
reference to structural surfaces previously interpreted from the seis-
mic data to follow the stratification directions.

To produce calculations of reasonable size, we decompose the
volume inversion in a set of independent inversions of single CDP
joint impedance porosity saturation models. Thus, our inverse prob-
lem combines the following information in estimating the 1D im-
pedance porosity saturation model associated with a CDP: (1) well-
log data at the surrounding wells, (2) seismic data corresponding to
the CDP, and (3) the petrophysical relationship between acoustic im-
pedance, total porosity, and gas saturation. Figure 2 shows the joint
1D model associated with each trace and the information and data in-
volved in the estimation.

MODEL CALIBRATION TO WELL-LOG DATA

We adjust parameters defining the petrophysical and geostatisti-
cal models for optimal description of the properties in the area on the
basis of well-log-estimated properties, using data from two area well
logs. We first upscale the well-log data to high-resolution model dis-
cretization (1-ms sampling) via common effective theory expres-
sions and use the upscaled well-log porosity, water saturation, and
acoustic impedance to obtain optimal parameters Vx> Pmaix> Vbrines
Phrines Veass and pg, for the Wyllie-Wood petrophysical transform. We
achieve this goal by implementing a nonlinear least-squares fitting
of the well-log impedance, adapted to the specific transform func-
tion.

Figure 3 shows plots of the well-log data points and the corre-
sponding surface defining the petrophysical deterministic Wyllie-
Wood transform fitted to the data; Figure 3cis a 3D view of the trans-
form and data points, which correspond to the well-log data used to
constrain the inversions in the field case (following). For a closer
look into data and model compliance, we show crossplots at particu-
lar bands. Our data were clustered in a high-saturation region for
brine-saturated rocks and a variable-saturation region at intermedi-
ate porosities that corresponded to the gas-reservoir rocks.

Figure 3a shows the fitting of the petrophysical transform for the
brine-saturated rocks, including samples with saturation larger than
95%. The gray band shows the size of the standard deviation from
the transform used in the statistical model and characterized from the
well-log data deviations from the transform predictions. On the oth-
er hand, Figure 3b shows a cut of the surface at 30% porosity with the
projection of well-log data points within the band from 20% to 40%
porosity. The gray band indicates (plus and minus) one standard de-
viation of the impedance from the predicted petrophysical trans-
form, as characterized and modeled.

To define the parameters of our geostatistical model, we charac-
terized the vertical covariance of the well-log logarithmic porosity
and logarithmic water saturation. Figure 4a and b shows the experi-
mental covariance as a function of the time lag, calculated from the
well-log estimates for the two properties sampled at 1-ms time inter-
vals, and the corresponding covariance function model fitted to the
data. For the covariance function, we used a parametric model mix-
ing basic covariance functions: nugget, Gaussian, and exponential
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terms. The corresponding coefficients and parameters of the covari-
ance functions were fitted with a regression procedure to the experi-
mental covariance data. Similarly, we calculated the impedance pre-
dicted by the petrophysical transform evaluated at the porosity and
saturation well-log data and computed the corresponding deviations
from the well-log impedance data.

Figure 4c shows the covariances of the petrophysical relationship
data deviations and the corresponding covariance function model.
The well-log data show no correlation between water saturation and
porosity. Thus, for our synthetic tests and real case, we use zero prior
cross-covariances between the two properties.
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Figure 3. Crossplots of (a) well-log acoustic impedance and water
saturation for porosities of (a) 0.95-1.00 and (b) 0.2-0.4. The dark
gray line shows the petrophysical transform values after calibration
against the well-log data. The clear gray bar shows the size of (plus
or minus) one standard deviation of the well-log acoustic impedance
from the transform. (c) A 3D view of well-log data (black dots) in
acoustic impedance, porosity, and water saturation space and the
surface for predicting the acoustic impedance as a function of poros-
ity and water saturation after calibrating the data.

The property covariance in lateral direction is not constrained by
the well-log data because wells are vertical in the area. Lateral cova-
riance is subjected to a choice of model and ranges; we use a smooth
Gaussian covariance model. As is done for reservoir geostatistical
modeling, we use surfaces picked from major seismic continuous
events to guide the lateral correlation of the medium properties, en-
suring the correlation follows the geometry of the strata. Finally, we
build the a 3D property covariance function as the product of the ver-
tical and lateral functions. For more information about covariance
function models, see Isaaks and Srivastava (1989) and Chiles and
Delfiner (1999).

SYNTHETIC EXAMPLES

We perform numerical tests of the inversion technique using the
petrophysical, geostatistical, and seismic source wavelet parameters
related to our gas reservoir area. Figure 5 shows a joint total porosity,
water saturation, and acoustic impedance model created following
artificial structural surfaces and simulated property fields. We locate
gas reservoirs in two sand strata as particular targets of the inversion.
From the property sections (Figure 5a-c), we calculate the seismic
data (Figure 5d), used as observed seismic data for the inversion.
Equally, we take the 1D model configuration beneath position
2500 m (X1 in the figure) as observed well logs of acoustic imped-
ance, total porosity, and water saturation to condition the inversion.

For comparison, we present the results of the estimated property
fields following three categories of procedures highlighting the in-
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Figure 4. Experimental covariance in time (gray curve) and the cor-
responding modeled covariance function (solid black curve) for the
following well-log-derived properties: (a) logarithmic porosity, (b)
logarithmic water saturation, and (c) deviations of well-log-derived
acoustic impedance from corresponding values predicted by the
petrophysical transform of porosity and water saturation.
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fluence of each type of information involved in the inference prob-
lem:

1) Geostatistical estimation from well data, which corresponds to
the case of no seismic likelihood information in equation 1. In
this case, the result is the cokriging estimate based on the well-
log data with covariances, following the structural directions
interpreted from the seismic section.

2)  Petrophysical seismic inversion with no conditioning to well-
log data, which corresponds to the case of no well-log spatial
constraint to the model. The result combines the information of
the seismic data with the petrophysical model relating medium
properties. Well-log data are used to build up the global petro-
physical and geostatistical models and to extract the source
seismic wavelet, but not as spatial constraint to the property
fields. As part of the geostatistical model, the expected reser-
voir properties are given as a linear trend fitted to the well data.
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Figure 5. (a) Acoustic impedance, (b) total porosity, and (c) water
saturation sections used as true properties for the synthetic tests. (d)
The seismic section calculated from the acoustic impedance section
and used as observed data for the tests. Location of the virtual well
used to condition the inversions is indicated by X1, with the path
shown as a black dashed line. Locations X2 and X3 indicate CDP po-
sitions used for uncertainty plots in Figure 8, which are also shown
as a black dashed line. The two white dashed lines in (d) indicate the
polygons used to guide the property covariances along the structure.

3)  Petrophysical seismic inversion conditioned to well-log data,
using the complete formulation described here.

Application of the Monte Carlo inversion technique generates
20,000 model realizations for our synthetic case. We start the sam-
pling chain in the cokriging estimation configuration and perturb the
model configurations by combining the geostatistical simulation and
the Metropolis sampler as described in a previous section. A typical
chi-squared (x?) seismic residual plot for a CDP trace located at po-
sition X2 indicated in Figure 5 is shown in Figure 6a. In the plot, we
distinguish the burn-in phase, influenced by the initial model, and
the sampling phase, where model configurations satisfy the seismic
observations within uncertainties. With the optimization technique,
we initiate the iteration algorithm at the cokriging estimates of the
properties and iterate for optimizing jointly the seismic data misfit,
petrophysical relationships, and prior geostatistical information.
Figure 6b shows a plot of the progress of the x? seismic data misfit,
with the iterations of the optimization technique, at the same loca-
tion X2 of Figure 5.

Figure 7 shows the estimated property fields obtained with the
joint seismic and well-log inversion and the two categories based on
partial information, solved with the optimization method. Results of
the numerical tests show the input of each type of information into
the estimated result and the benefit of combining well-log and seis-
mic information. The geostatistical estimation shown in the first col-
umn of Figure 7 is based on pure extrapolation of the well-log infor-
mation, located at the horizontal position of 2500 m, along the stra-
ta. We select a 13-km-long range for the lateral covariance along the
stratification in these tests. The technique successfully extrapolates
the well information following the structural lineation of the strata.
However, the second gas reservoir is not predicted in the estimation
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Figure 6. Seismic residual evolution with iterations for the (a) Monte
Carlo and (b) optimization algorithms applied to the synthetic data,
and the corresponding plots for the (c) Monte Carlo and (d) optimi-
zation algorithms applied to the field data. The seismic data residuals
are measured in 2. Burn-in and sampling phases are indicated for
the Monte Carlo method.
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because the true well (path X1 in Figure 5) misses the second gas res-
ervoir. Also, the limits of the first gas reservoir are extrapolated away
from the true location. This illustrates that pure geostatistical estima-
tion neglects lateral heterogeneities, as expected.

On the other hand, the seismic petrophysical inversion, shown in
the second column, resolves the impedance model at a vertical scale
commensurate with the seismic resolution, missing thinner strata
present in the target model. Also, because of the coupled effects of
porosity and water saturation in the acoustic impedance, the inver-
sion resolves with medium accuracy both reservoir parameters:
some features of the porosity stratification are mapped into the water
saturation estimation, and vice versa. Nevertheless, the marked de-
crease of water saturation corresponding to both reservoirs is identi-
fied clearly. Also, major stratification of the porosity is correct at
seismic scale. Finally, the seismic inversion conditioned to well-log
data solves many of the limitations of each type of procedure. As can
be seen, each of the properties is better resolved, the two gas reser-
voirs can be identified, and vertical resolution increases in the region
within the lateral covariance range of the well-log data.

Similar results were obtained with the Monte Carlo method. For
this method, the estimated fields are the average of the model config-
urations generated in the sampling phase. As explained earlier, an as-
set of Monte Carlo sampling is the many model realizations, allow-
ing straightforward estimation of marginal probabilities on model
parameters or functions of model parameters. Estimated probabili-
ties correspond to frequencies calculated from the set of model con-
figurations sampled by the chain.

We show in Figure 8a marginal cumulative probabilities for
acoustic impedance, total porosity, and water saturation obtained
with the petrophysical inversion of seismic data (with no well-log
conditioning) at three different distances from the well, correspond-
ing to locations X1, X2, and X3 in Figure 5. Color plots indicate the
probability of the property’s true value being smaller than or equal to
the property axis value, fully describing the uncertainty of the prop-
erty profiles inferred with the inversion. In our color scale, green
plus clear blue areas approximately demark a 0.9 uncertainty bar.
The figure also shows the true and estimated property profiles for
comparison. Figure 8b is the corresponding probability plots for the
petrophysical seismic inversion conditioned to the well-log data at
position X1. Comparing this case with the unconditioned inversion,
we can verify (1) smaller uncertainties, (2) uncertainties reducing
with the distance to the conditioning well log, and (3) higher fre-
quency content in the estimated profiles.

INVERSION RESULTS FOR A GAS RESERVOIR

We apply the inversion method to a stacked and time-migrated
small-incidence-angle (within 18° from the vertical) seismic data set
inan area of a producing gas reservoir; a section of the seismic data is
shown in Figure 9. The area for the inversion corresponds to a clastic
sequence with good lateral continuity affected by small faults and
mild deformation. As indicated, there is no oil presence in the area;
thus, the possible fluids are brine and gas.
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Figure 7. Acoustic impedance, total porosity, and water-saturation sections estimated using the optimization method: (a-c) cokriging true well-
log data at well X1, (d-f) petrophysical seismic inversion with no well-log conditioning, and (g-i) joint seismic and well-log-based petrophysical
inversion. The conditioning well data are located in the path shown by the black dashed line.
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We picked a horizon in the seismic section following the major
structure of the strata and its small steps to guide the covariance defi-
nition. Two wells that intercept the section correspond to the wells
and data previously characterized, used to calibrate the petrophysi-
cal and geostatistical model. The horizon and position of the two
wells are also indicated in Figure 9. Based on the seismic data and
well-log-derived impedance, we estimated a source wavelet for the
area to simulate the seismic data, similar to a method of Lines and
Treitel etal. (1985).
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As explained, the 3D covariance function combines the vertical
covariance models shown in Figure 4 and a lateral Gaussian covari-
ance model along the reference horizon indicated in Figure 9. Major
seismic events show continuity along the reference structural hori-
zon direction for more than 9 km. To account for this continuity, we
adopt a lateral covariance range of 13 km to complete the geostatis-
tical model. If a wider area should be treated or major seismic events
be less continuous than they are here, the lateral covariance of seis-
mic amplitudes along the structural horizon may be characterized

b) Seismic inversion
conditioned to X1 well-log data
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Figure 8. Cumulative marginal probabilities (color plots) calculated from the set of model realizations at CDPlocations X1, X2, and X3 (see Fig-
ure 5) for (a) unconditioned seismic petrophysical inversion and (b) seismic petrophysical inversion conditioned by well data at X 1. The estimat-

ed (red lines) and the true (black lines) property profiles are superimposed.
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and modeled for constructing the horizontal component of the cova-
riance function, as done for the vertical components in Figure 4.

We present the results of the estimated property fields following
the same three procedures categorized for the synthetic tests: (1)
geostatistical estimation, (2) petrophysical seismic inversion uncon-
ditioned to well-log data, and (3) petrophysical seismic inversion
conditioned to well-log data. In these categories, we apply the two
solution methods: Monte Carlo sampling and optimization. Parame-
ters defining the petrophysical and geostatistical models are the
same for the two solution methods and correspond to the model cali-
bration described previously.

Figure 6¢ and d shows the progress of seismic data residuals with
iterations measured in y? statistic for the CDP model at location X1
(Figure 9). Iterations for the Monte Carlo method (Figure 6¢) corre-
spond to steps in the Markov chain associated with perturbations of
the model configurations. Estimated fields and probabilities are cal-
culated from the set of realizations generated during the sampling
phase of the chain. A similar plot is shown for the optimization ap-
proach (Figure 6d), with each iteration corresponding to a model up-
date after constructing and solving the linear system of equations
10-12.

Results with the optimization solution

Property sections obtained with the optimization solution are
shown in Figure 10 and correspond to optimal values: maximum
combined probability density values obtained by solving equations
10-12 after several iterations, as shown in Figure 6d. The column ar-
rangement of the plots corresponds to the geostatistical solution
(cokriging), the seismic inversion with no conditioning to the well-
log W1 data, and the seismic inversion conditioned to the well-log
W1 data. For all of the plots, the corresponding well-log properties
are superimposed at well-path locations of wells W1 and W2 for
comparison with the properties estimated with the inversion. Num-
bers at the bottom of the sections indicate the correlation between the
well log and the inversion-estimated properties for each case.

In Figure 10a-c, the geostatistical estimate shows the extrapola-
tion of the conditioning well logs at position W1 along the structural
direction; the three properties match the well log at the intersection.
Properties progressively tend to the prior mean with increasing dis-
tance from the conditioning well log, e.g., the water saturation at the
gas reservoir progressively reduces away from well W1. Compari-
son with the well W2 well-log data shows that major features conve-
niently have been extrapolated in space because the structure is par-
ticularly continuous. However, the geostatistical estimation does not
account for the location of medium heterogeneities and the magni-
tude of property contrasts imprinted on the seismic amplitude infor-
mation.

For the seismic petrophysical inversion (Figure 10d-f), there is no
well constraint; wells are superimposed on the section at their loca-
tions W1 and W2 only for comparison with the inversion results. The
image shows that the estimated impedance and water saturation have
a good match with the corresponding well logs for thick strata, com-
mensurate with the frequency content of the seismic data, as expect-
ed; corresponding correlations are shown at the bottom of the plots.
The gas saturation looks continuous between the two wells, and no
additional gas strata are present, which coincides with independent
production information. On the other hand, the low impedance asso-
ciated with the gas-bearing sand reservoir is mapped partially into
the porosity field and water saturation. This results from the common

influence of the two reservoir properties on the acoustic impedance,
in this case overestimating the porosity at the site of the reservoir.
Also, high well-log porosities that correspond to a shale seal located
at approximately 10 ms above the gas reservoir are underestimated.
The correlation of the estimated porosity and the well-log porosity is
lower than correlations obtained for the other two properties for the
unconditional seismic inversion.

The seismic inversion conditioned with the W1 well-log data
(Figure 10g-i) improves the match of the estimated properties with
both wells (conditioning W1 and blind test W2). Improved correla-
tions are shown at the bottom of the figures for all three model prop-
erties — acoustic impedance, water saturation, and total porosity —
showing that the well-log information contributes to the resolution
across saturation and porosity, which have coupled effects on the
acoustic impedance. Also, the plots reveal the increase in the vertical
resolution for all estimated property fields where thinner strata have
been inferred. The inferred sections are not a plain extrapolation of
the W1 well-log data, as in the case of the geostatistical estimation,
because they include the medium lateral heterogeneities imprinted
in the seismic data. The gas saturation shows continuity along the
reservoir.

Results with the Monte Carlo solution

The many realizations produced with the sampling algorithm are
used to calculate the estimated fields and probabilities for the three
model properties. Figure 8c shows the progress of seismic data re-
siduals and the length of the sampling chain for the real-case applica-
tion. We used 35,000 iterations of the Monte Carlo sampling algo-
rithm per trace with a burn-in phase of 2000 interations, which pro-
vided 33,000 realizations in the sampling phase of the process. The
estimated property fields obtained with the Monte Carlo method are
similar to the sections shown in Figure 10 estimated with the optimi-
zation approach. In addition, by constructing the cumulative fre-
quency of the realizations, we estimated the marginal cumulative
probability distribution for each property.

Figure 11a shows the cumulative probability plots for the seismic
petrophysical inversion with no well constraints for three CDPs in
Figure 9, giving a complete description of the uncertainty associated
with the estimate. The color plotted at each point indicates the proba-
bility that the property axis value is greater than or equal to the true
property value for the corresponding time. Intermediate plot tones
between yellow and dark blue can be regarded as marking uncertain-
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Figure 9. Seismic section that corresponds to a time-migrated stack
of small incidence angles (< 18° from the vertical). Superimposed
are the structural horizon used to guide lateral covariances (dot-
dashed black line), wells W1 and W2 (dashed line), and an additional
location X1 (also dashed white line) used for probability plots in Fig-
ure 11.
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ty bars around the estimated value of the property; the plot zone en-
compassing the green and clear blue areas approximately corre-
sponds to a 0.9 probability error bar. We superimpose the prior prop-
erty field, which is a linear trend adjusted to the well-log data, and the
inversion-estimated field to the probability plot. Two of the locations
correspond to well sites; for comparison, we superimpose the well-
log-derived property sampled at 1-ms intervals. Correlations be-
tween the well-log and inversion estimates obtained with the Monte
Carlo method are shown at the bottom of the plots. Note the appro-
priate location and magnitude of the water-saturation prediction re-
lated to the gas reservoir and the lower frequency content of the seis-
mic inversion result, compared with the well log sampled at 1 ms.

Figure 11b shows the same probability plots corresponding to the
results of the seismic petrophysical inversion constrained with well-
log data corresponding to well W1. The estimated result and the pri-
or profiles, which in this case correspond to the cokriging estimate,
are superimposed; at the conditioning well W1 and the blind test
well W2, the well-log-derived properties are also superimposed. We
can see from these probability plots that the uncertainty is much
smaller at site W1 and increases progressively for sites X1 and W2,
as expected.

A few other features are worth mentioning. First, near the condi-
tioning well, the estimated properties closely approximate the well-
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log data. Second, our model allows for deviations of the estimated
field from the well-log data attributable to the nugget terms modeled
in the covariance functions, which implies an amount of indepen-
dence between the well data and the property field estimated at the
nearest CDP. Third, locations and magnitudes of water saturation are
adequate at blind test well W2. Fourth, porosity prediction improves
from the one corresponding to the unconditioned seismic inversion
shown in Figure 11a. Fifth, the vertical resolution of the estimated
properties improves. Also, the location and magnitude of the gas sat-
uration at the reservoir level adequately match the well W2 satura-
tion derived from the well-log data.

DISCUSSION

We would like to highlight different assumptions and simplifica-
tions made when implementing the method. The petrophysical mod-
el is not general purpose and has been developed specifically for gas
reservoirs without oil. Different petrophysical models could be im-
plemented, depending on the reservoir situation. Gassmann fluid
substitution relations, for instance, could improve the modeling of
partial saturation eftects on acoustic impedance. A review of com-
mon predictive relationships between porosity and compresional-
wave velocity, and their combination with Wood’s emulsion equa-
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Figure 10. Matrix of plots corresponding to results of the optimization inversion method for acoustic impedance, total porosity, and water satura-
tion. (a-c) Cokriging of well data along the structural horizon. (d-f) Sections estimated by seismic petrophysical inversion with no well-log con-
ditioning. (g-1) Sections estimated by the seismic petrophysical inversion conditioned to well W1 data. At well paths W1 and W2, the well-log-
derived properties are superimposed on the corresponding inversion estimates for comparison.
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tion, is given in Mavko et al. (2003) and Brereton (1992). With any
choice of relationships, validation and calibration of the petrophysi-
cal transform with the actual well-log data from the area are needed.
Also, more complete petrophysical models can be enhanced to in-
clude other parameters, such as facies, to improve deterministic pre-
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diction of the elastic parameters. In cases where matrix lithology ef-
fects are particularly relevant or fluid-property contrasts are less
marked, as in our case, we suggest extending the application to in-
vert multiple offset (or angle) seismic data to estimate a more com-
plete set of reservoir properties.
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Figure 11. Cumulative marginal probabilities for the model properties (color plots) calculated from the set of joint model realizations for (a) un-
conditioned seismic petrophysical inversion and (b) seismic petrophysical inversion conditioned to well W1 data shown at CDP locations W1,
X1, and W2 (see Figure 9). The estimated property profiles (red lines), the prior property profile (white lines), and the well-log-derived property
profiles (black lines) are superimposed.
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An important advantage of our general petrophysical formulation
is that we use a mixed model, combining petrophysical deterministic
relationships and random deviations. Well-log statistics may not be
representative of the reservoir because of limits on the well numbers
or because wells are not drilled randomly. Thus, a purely empirical
fit of a function to the well-log data is sensible with poor data cover-
age. In our model, we use petrophysical relationships calibrated to
the well-log data for more robust modeling, consistent with common
petrophysical knowledge. On the other hand, none of the determinis-
tic petrophysical transforms fully explains the relation between the
variables. Thus, describing well-data deviations from the calibrated
relationships allows us to account for the variability of medium
properties from these relations.

Upscaling recipes and relationships are a matter of discussion
(Lindsay and Van Koughnet, 2001; Liner and Fei, 2007). Well-
known situations correspond to the two extremes in wavelength and
heterogeneity-size ratios, given by the effective media and ray theo-
ries. However, behavior in many common cases is more complicated
and involves a combination of the two phenomena. In real cases, we
have a distribution of wavelength and medium heterogeneity sizes.
Inintermediate cases, dispersion and apparent attenuation can be ob-
served, and different approaches have been proposed (Chapman et
al., 2006). In our case, the dominant period is approximately 20
times larger than the high-resolution model layer thickness; there-
fore, rescaling to a seismic resolution layering is required.

We rescale between our low and high model resolution scales di-
rectly in the impedance. This is convenient in our formulation be-
cause impedance is the elastic parameter in our model, whereas be-
tween the original well-log sampling and the high-resolution model
scale, we use common effective media expressions. Our upscaling
expression for impedance combines ray and effective media consid-
erations and produces results within the two bounds. For the scales
we relate in our synthetic and real implementations, our tests with
the actual data of the area show that differences are negligible be-
tween the effective media average, the ray theory average, and our
intermediate model average of the impedance. However, we formu-
late this issue for generality of the method because it relates the seis-
mic and subseismic scales. In different conditions of model-time
sampling, source-frequency composition, or variability of medium
properties, the difference in the smoothing approach used for the
acoustic impedance could be significant.

Because effects of total porosity and gas saturation in acoustic im-
pedance are coupled, their estimation could be unresolved from the
sole information rendered by the near-vertical incidence-angle seis-
mic data. The additional information provided by the nonlinear
petrophysical model and the geostatistical characterization of reser-
voir properties contribute to the resolution of the two properties.
However, as shown in the synthetic tests for the unconditioned seis-
mic petrophysical inversion, some features of high gas saturation are
mapped partially as high porosities, and vice versa. The coupled ef-
fectis given at the level of the petrophysical model because the two
properties are uncorrelated at the level of the prior statistical infor-
mation. Conditioning the inversion to well-log data largely contrib-
utes to resolving the ambiguity resulting from the petrophysical cou-
pled effect of the two reservoir properties. On the other hand, plain
geostastistical estimation (cokriging) based on the well-log data
misses information between the wells carried by the seismic data and
related with strata heterogeneities and structural features of major
interest in reservoir description. The combination of well-log and

seismic inversion builds on the corresponding assets of each type of
information to estimate the property fields better.

Another issue of reservoir characterization is the possibility of de-
lineating thin strata. Because of the lateral covariance in the geo-
statistical model, the high-resolution well-log data extrapolation
along the structural directions contributes to the property-field esti-
mates. Joint seismic and well-log inversion improves vertical reso-
lution as a result of the contribution of the well-log data. This is not
particularly important for the gas-bearing sand, which has a layer
thickness commensurate with the seismic dominant wavelength, but
it is clear for other thinner strata. In particular, the acoustic imped-
ance and the porosity sections resolve thin stratification that matches
corresponding thin strata at the blind test well W2, located more than
9 km from the conditioning well W1. Correlation is larger and rms
deviation is smaller for the joint seismic and well-log-based inver-
sion than for each of the disjoint components for geostatistical and
seismic information. Similar results on improving the joint vertical
resolution are shown in the synthetic tests.

Because they are based on the same general formulation and as-
sumptions, the results obtained from the Monte Carlo sampling and
optimization methods are similar in the method’s major features.
Minor differences result from particularities of the two-solution ap-
proach. Concerning execution times, it is important to notice that the
number of iterations shown in Figure 6 for the Monte Carlo and opti-
mization methods cannot be used straightforwardly to compare the
associated computation effort. A single iteration of the Monte Carlo
method is a very fast process, whereas an iteration of the optimiza-
tion method requires solving a large system of equations. For the re-
sults shown here, the optimization approach is faster by a factor of 20
compared with the Monte Carlo approach for estimating medium
properties. However, the Monte Carlo method describes property
probabilities (uncertainties) in addition to property estimates.

CONCLUSION

We have developed a general formulation for inverting seismic
data under well-log constraints derived from petrophysical and geo-
statistical models. It allows a joint description and inference of reser-
voir- and elastic-medium properties. The formulation unifies the
steps of geophysical and petrophysical data inversion within a quan-
titative scheme, accounting for nonlinear relationships, conditioning
of estimated property fields to well-log measurements, and combi-
nation of uncertainties. We describe solution methods for two major
approaches, sampling and optimization, and illustrate the techniques
with a synthetic example and an application to field data from a gas
reservoir. In this specific setting, we invert seismic near-vertical in-
cidence-angle and well-log data to estimate gas saturation, porosity,
and acoustic impedance jointly.

Results of the numerical tests are coherent with the hypotheses of
the method. They show that geostatistical interpolation commonly
misses laterally discontinuous features, whereas petrophysical seis-
mic inversion (without well conditioning) is limited in frequency ac-
cording to the seismic signal. Also, the latter is limited in resolving
reservoir properties (porosities and saturations), which can be cross-
mapped partially for some events because of their coupled effect on
acoustic impedance. These issues are improved in the petrophysical
seismic inversion conditioned with well-log data. In the field case,
we base our inference parameters on calibrating the petrophysical
transform and the geostatistical characterization of the well logs and
transform deviations.
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Results of acoustic impedance, water saturation, and porosity
jointly honor the seismic data, well logs, and petrophysical model
used for the area. We successfully resolve the property fields delin-
eating gas saturation at the level of the reservoir. The seismic petro-
physical inversion constrained by well-log data combines assets of
the two types of information: increased vertical resolution close to
the well, estimated fields that conform to the well logs at intersec-
tions, no smoothing of lateral resolution, and adequate joint resolu-
tion of water saturation and porosity.
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