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We present a statistically based search strategy to explore velocity-depth model space derived from the
inversion of seismic refraction and wide-angle data. The method is based on the Metropolis algorithm and
computes the likelihood of any given model of fitting the observed data. By iteratively perturbing the model,
the model space is sampled and the resulting probability density function provides a quantified measure of
the velocity resolution as a function of depth. Unlike manual analysis, where a single layer is perturbed to test
its sensitivity ignoring the effect on the deeper layers, this method computes the fit for the whole model at
each iteration and only selects the models that achieve a specified global fit. We show results of the
algorithm from the 1-D inversion of Expanding Spread Profiles from the central part of the Rockall Trough to
the west of Britain. As expected, the method highlights the areas of the model that are both well and poorly
constrained and shows the degradation of resolution with increasing depth such that for high quality data
the accumulated velocity errors at basement depths is +/— 5%. This error increases as the data quality
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decreases and the estimated pick error increases.
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1. Introduction

The use of long-offset seismic data to define the velocity structure
of the sub-surface is well established (Cerveny and Psencik, 1984;
Fuchs and Miiller, 1971; Hole et al., 2005; Mereu, 1990; Zelt and Smith,
1992). In areas where little lateral variation is expected, e.g. along
strike or in the centre of basins, two ships can be used to create a
synthetic super gather called an Expanding Spread Profile (ESP)
(Musgrave, 1962). The cost of this method is high compared to using
OBS/H and analysis is restricted to 1-D but the advantage of this
method is data redundancy which enables stacking of common offset
data to improve the signal-to-noise ratio yielding long-offset dataset
of the highest quality.

Analysis of long-offset data usually involves three steps: data
processing and geometry assignment; identification of individual
phases, picking their travel time versus offset, and estimation of
picking error; and inversion of the travel-time data to give the
optimum velocity model. Additional modelling and perturbation of
target layers are used to assess the sensitivity of the parts of the model
and its overall resolution. RAYINVR (Zelt and Smith, 1992) is an
extensively used code that has been well tested and is accepted as a
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benchmark that can invert both reflection and refraction data. The
user provides the observed picked travel times and a velocity versus
depth model. The code computes the forward data from the model
and compares it to the observed data. By iteratively updating the
model the error is reduced until an acceptable misfit ( y?) is obtained.
A satisfactory model will give a y? close to one, which means the fit of
the computed data to the observed data is similar to the original
picking errors of the observed data. It is normal practice to trade the
% value against model complexity to establish the minimum
acceptable geological structure that adequately fits the data.
Unfortunately this inversion problem is non-unique and there is a
family of models that would fit the data within acceptable limits. The
arrival at the particular final model is dependent on several factors,
these include: the quality of the data, which has a finite bandwidth
and contains noise; the total number of sources and receivers and
their layout; and how the model is parametrised. Even with high
quality data, it is likely that the same data analysed using a different
inversion scheme or with a different strategy will produce a different
result; they will be similar in the gross sense but not in the detail. To
manually explore the range of potential models would be time
consuming so testing is normally restricted to a number of key layers
and resolution analysis using chequer-board patterns (Zelt and Smith,
1992; Zelt, 1999). An alternative approach is to use a ‘Monte Carlo’
based method many random models are generated and compared to
find a best fitting range of parameters; or we could take a model and
perturb it systematically to find out how well resolved each of the
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Fig. 1. Locations of ESPs in central Rockall Trough. Red circle, ESP-11; dark blue circle,
ESP 89-1; and light blue circle, ESP 87-1. The black line is the location of the BIRPS
WESTLINE deep seismic profile (England, 1995).

model parameters are. By filtering the results to give models that have
a y* below a certain value and specifying that they must reach above a
set percentage of picks, we can begin to find a set of models that are
acceptable. Either of the methods would, eventually, both find the
optimum model and also quantify the uncertainty for each of the
parameters. However, they are both computationally expensive and
many of the generated models would fail or be geologically unlikely,
though this could be addressed by placing bounds on the model space.
In this paper we assume the solution from an inversion is acceptable,

Table 1

Table of picked phases from ESP-11 together with the results from the inversion.
Identifier ~ Colour  Phase Nies Toms (5) X2

1 / Sea-floor reflection 285  0.032 0.279
2 /| Upper sedimentary reflection 1 116 0.005 0.066
2} /= Upper sedimentary reflection 2 142 0.013 0.407
4 /| Upper sedimentary reflection 3 34  0.003 0.022
5 /| Lower sedimentary reflection 1 81  0.008 0177
6 /= Lower sedimentary reflection 2 64  0.012 0.337
7 (| Possible basement reflection 158  0.011 0.283
8 / Crustal reflection 130  0.024 0.160
9 /M Moho reflection 222 0.028 0.019
10 /| Upper sedimentary refraction 1 30  0.005 0.054
1 /= Lower sedimentary refraction 1 23 0.004 0.041
12 /| Lower sedimentary refraction 2 57  0.008 0.178
13 / Possible crustal refraction 1 31 0.017 0.086
14 ™/ Possible crustal refraction 2 93  0.015 0.022
Total Whole model 1466  0.021 0.182

Nps is the number of picks fitted, Trms is rms time misfit, and 2 is the normalised ratio
of the time misfit to estimated pick error for each phase and for the whole model. The
colours are used in Fig. 2 to highlight the interpreted reflection and refractions.

in that it is geologically plausible and fits the data to an acceptable
level, and we want to test uncertainty of this model against the
original data rather than the much larger question of whether the
inversion solution is the best possible model. To achieve this aim, we
use a Markov Chain based method called the Metropolis algorithm
(Metropolis et al., 1953) to investigate the shape of the inversion
objective function in the vicinity of our solution as a statistically
robust approach. To avoid introducing possible systematic errors in
changing the forward modelling algorithm and associated parameter-
isation we use those provided by the RAYINVR code.

To test our approach we inverted some ESP data from the Rockall
trough (Fig. 1) to the west of the British Isles to derive a velocity-depth
mode. The central area of the Rockall trough is characterized by flat
laying sediments over a basement with little apparent relief (England
and Hobbs, 1997). So provide an ideal target for ESP surveys. High
redundancy, high spatial sampling and a repeatable seismic air-gun
source mean that these data can be processed and stacked to give a
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Fig. 2. ESP-11 after signature deconvolution and showing picks used in the RAYINVR inversion. The colours and numbers of the picks correspond to the phases listed in Table 1. Gather

plotted with a reduction velocity of 6 km/s.
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long-offset common mid-point gather with a high signal to noise.
These data (ESP-11) were previously analysed by Joppen and White
(1990). For this work we reprocessed the data which included
estimation of the signal source and deterministic deconvolution to
maximise temporal bandwidth and minimise picking uncertainty
(Fig. 2). Fourteen possible phases were identified which constrained a
twelve layer model with either a reflected arrival, a refracted arrival or
both. Using RAYINVR a velocity-depth profile was computed that fitted
the observed data (Table 1, Fig. 3). Comparison with other results are
shown (Joppen and White, 1990; Hobbs and Collier, 1997) and, as
expected, the gross structure is similar but the detail is different.

2. Metropolis-Hastings algorithm

Mosegaard and Tarantola (1995) and more recently Mosegaard
and Sambridge (2002) present the Bayesian based Metropolis
algorithm that provably samples the a posteriori probability density
using Markov chain Monte Carlo methods as a means to assess
uncertainty in inverse problems. The algorithm consists of two parts.
The first part randomly perturbs a model which is then passed to the
second part of the algorithm which decides if the model passes a data
fitting test. An iteration of the algorithm is as follows: a selected
parameter is perturbed from the current model (m,,) to form a new
model (myew), the likelihood is calculated, and the my,y is accepted or
rejected according to a set of simple rules:

1) if the value of the likelihood L(1mpew) of the new model is larger
than or equal to the likelihood L(mc,,) of the current model, myey
is accepted;

2) if the difference in the exponent of the likelihood function (defined
below) for mye, from the equivalent exponent of the starting
model is greater than a threshold value, my.. is rejected;

Velocity (km/s)
0 1 2 3 4 5 6 7 8 9 10
2 " 1 " 1 " 1 " 1 L 1 " 1 1 1 L 1 4

Depth (km)

10 4

111 5 n
° :

13 1 -

14 -

15-'I'I‘I'I‘I'1'I'i'l

Fig. 3. Comparison three results for ESP-11. Dashed line, Joppen and White (1990); red
line, Hobbs and Collier (1994); solid line , Pearse (2002).

3) if the value of L(mpey) is smaller than L(mg,), then a random
decision to accept myew iS made, with the probability L(mpew)/L
(Meyr) of accepting myew, Otherwise mye,, is rejected.

In the cases (2) and (3) if the mpe is rejected then the model
reverts to me,, and a new random perturbation is proposed.

In the RAYINVR inversion code (Zelt and Smith, 1992), and other
similar ray-tracing algorithms, a normalised misfit y? value is
computed to indicate the goodness of a fit between calculated and
observed travel times. Which is expressed as

2
. 1 N ([ical _tiobs) :
=N o2 (1)

i=1 i

where N is the number of observed picks predicted by the model; t<!
and t°® are the calculated and observed travel times for pick i
respectively; and o; is the standard deviation, or estimate of the
travel-time uncertainty, of that pick. For large N, when the difference
between the observed and calculated travel time approaches the
uncertainty then y? approaches 1.0.

An alternative approach is to calculate a model likelihood. By
comparing the likelihoods of two or more models we can draw similar
conclusions about their relative fit. A likelihood can be calculated
using the multivariate Gaussian distribution

(tical _ tlpbs) 2

L'(m) = (ZH)TiIi![l (Oi 1) exp —%Z | (2)
i= i

We can relate the y? value returned by RAYINVR by combining Eq.
(1)andEq. (2).Alsoif N, in Eq. (2), were a constant then we can replace
the product in the equation with a constant ¢ given that the pick
uncertainty is estimated from the observed data (Pearse, 2002) to get

L'(m) = ¢ x exp [—%(N—l);{z]. 3)

N can be considered as a constant only if the forward modelling
produces a calculated travel time for every observed pick from the real
data, i.e. there is a t for every t°>, However, in complex models the
number of tcal for a phase and the range over which it can be observed
may change for each model for example: changes in velocity gradient
in a layer can shift arrivals to a different offset range that does not
match the observed data; or a velocity drop across a boundary can
loose some or all arrivals from the layers below. To enable the
simplification in Eq. (3) we use the number of observations (t°>)
which always remains constant. Unfortunately this will favour models
with a low y? irrespective of whether or not all of the observed picks
are reached by the calculated phase. So a model that produces
theoretical travel times that fit the observed data well but for only a
minority of the observed picks so will be preferred over a model that
produces theoretical travel times with a reasonable fit for the majority
of the observed picks. In order for latter model to be considered more
probable, it is necessary to weight the outcome so that the likelihood
is bias towards fitting more data at the expense of y2. For
mathematical convenience we choose this “hit-rate” function such
that our final likelihood for a given model m is

L(m) = ¢ x exp(—% {(ND"S — 1)+ (N —N“')ZD. )

where N and N°® are the number of calculated and observed picks.
The selection of the hit-rate function, (N°” —N%)2, is arbitrary and
determined by trail and error. The number of missed picks squared was
found to be satisfactory for the case in hand. If the impact of this function
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on the likelihood is too small, the search will accept models that do not
predict a significant number of the observed picks, in the limit the
likelihood reverts to Eq. (3).If it is too large then the converse occurs and
the search is dominated by models that predict all the data irrespective
of the misfit with the observed travel times. To avoid the likelihood of
the perturbed model getting too small, a threshold is set such that the
exponent in Eq. (4) should not be more than given value from the
original model from the inversion. This value has to be tuned to reflect
what would be a minimum acceptable hit-rate and maximum misfit.
Unlike prior which should not be data dependent, this effects the
computed likelihood which is a function of how well particular
parameters fit the data. So the effect is to modify the likelihood by
setting it to zero for any model that exceeds the threshold.

By restricting ourselves to a 1-D model the total number of model
parameters is small and because of the data quality the total number of
observations is high. These combine to give a well constrained likelihood
function so it was not necessary to impose any restrictions on the prior
model space other than a threshold on the exponent. However, for less
well constrained likelihood functions it maybe necessary to impose
some prior conditions to particular layers to ensure the search remains
in parts of the model space that are geologically plausible.

3. Model perturbation

To achieve a statistically robust estimate of the uncertainty, it is
necessary to create a sufficient number of perturbed models that
efficiently sample the model space. The input files for RAYINVR define
each layer as a depth to the top of the layer in kilometres, and the
velocity at the top and bottom of the layer in kilometres per second.
This parameterisation means that layer thickness, mean velocity and
gradient are all strongly linked. If we perturb the depth to the top of a
layer then we are changing the thickness and velocity gradient of this
layer and the layer immediately above, or if we perturb either the
upper or lower velocity within a layer we will change the mean
velocity and gradient for the travel time of the this layer and all the
subsequent layers. In either case the perturbed model will probably
only achieve a low likelihood because the misfit for all the subsequent
picks will increase and it will probably fail the threshold test or, given
the rules above, be rejected making the search inefficient. Our
observations are measured in time so in the depth-velocity domain,
the possible range of solutions will lie along the diagonal (Fig. 4a) for
pre-critical reflections where there is a trade-off between interface
depth and over-burden velocity structure. By transforming the model
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Fig. 4. A schematic of the relationship of near-normal incidence travel-time
observations plotted in (a) depth-velocity domain and (b) time-velocity domain.
The ellipses represent the likelihood function given a level of uncertainty in the travel-
time pick. If the two parameters are perturbed independently then the square boxes on
each plot represents the range of values that need to be sampled to adequately describe
the possible uncertainty. The gray area represents the unacceptable models. By using
the time-velocity domain the area of unacceptable models is significantly reduced so
the Metropolis-Hastings search will be more efficient. For refracted arrivals the major
axis of the likelihood contours would be rotated in the direction of the velocity axis
because refracted arrivals are more sensitive to velocity than depth.
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Fig. 5. Probability density functions of the velocity with depth for ESP-11. This
distribution was calculated after 20,000 iterations of the Metropolis code, the range of
models sampled is enclosed by the grey area. The coloured velocity posteriori
probability density function has been normalized at each depth interval. Beneath the
well resolved water layer are three sediment layers with increasing velocities (layers 2,
3 and 4). The layer 3 has a smaller range of velocities (0.2 km/s) than the layers above
and below (0.3-0.4 km/s). The layer 5 (4.2-4.8 km) does not have an average velocity
constrained by a turning ray with velocities for this layer is controlled by the fit of a
reflection from the base of the layer. Layer 6 (4.8-5.8 km) is well constrained with
pronounced velocity gradient. Between layers 7 and 8 there is a significant velocity step
below this step velocity is less well constrained particularly layer 10.

from the depth-velocity domain to the time-velocity domain (Fig. 4b)
we can reparameterise each layer in the model by normal incidence
travel time, mean velocity and velocity gradient. Now for each layer
we can vary the velocity gradient and, by linking any changes in mean
velocity to a corresponding change in thickness, vary mean velocity
without significantly changing the travel time. So perturbations in
either of these parameters will not cause a major change in the misfit
for subsequent layers. The layer thickness is only affected by
perturbing the normal incidence travel time and, because of the
reasons stated above, is the most sensitive. After perturbation we
convert the model into the format required by RAYINVR.

A starting model and a set of travel-time picks is given to the
program. The program then calculates the travel times and misfit
using RAYINVR. The likelihood is calculated using Eq. (4). At each
iteration of the algorithm, a layer is chosen at random and one of the
corresponding model parameters (mean velocity, velocity gradient,
and normal incidence travel time) is modified by adding a random
perturbation pulled from a uniform probability function. The like-
lihood for the new model is calculated and it is accepted or rejected
according to the rules above. This process continues for a given
number of iterations, in this case a total of 20,000. This number is
chosen to be large so it gives the algorithm enough iterations to
investigate the model space and give a robust posteriori probability
density function (PDF). This function is calculated for each depth by
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Table 2

Comparison by layer of the velocity from the original inversion result with the mean and variance determined from the Metropolis search.

Layer Name Constraining phases Sample depth Velocity from inversion Mean velocity Variance
(refraction and reflection from base) (km) (km/s) (km/s) (km/s)

1 Sea water 1 2.5 1.50 1.50 0.02

2 Upper sedimentary layer 2 3.0 1.60 1.66 0.08

3 Upper sedimentary layer 3 34 2.26 2.26 0.04

4 Upper sedimentary layer 10 4.0 292 291 0.08

5 Upper sedimentary layer 4 4.5 248 244 0.24

6 Lower sedimentary layer 5,11 5.4 329 329 0.07

7 Lower sedimentary layer 6,12 6.4 3.87 3.83 0.08

8 Lower sedimentary layer ? 7 73 517 5.10 0.22

9 Crustal layer ? 13 7.9 6.01 6.06 0.50

10 Crustal layer ? 8 8.5 5.50 4,79 0.36

11 Crustal layer 14 9.1 6.53 6.59 0.30

12 Crustal layer 9 114 6.55 6.57 0.24

For most layers the agreement is good except for layer 10 where the mean velocity is lower than the inversion result.

gridding the accepted models with a resolution of 0.01 km in depth
and 0.01 km/s in velocity and counting the number of times the
accepted velocity models passed through each grid cell. The bin-width
is chosen to convey the uncertainty at any part of the moOdel at a
useful scale and retain subtle variations of the distributions.

4. Application of the metropolis method to real data

The objective is to quantify the uncertainty in a given model rather
then the larger issue of finding the optimum model. So we are
assuming the given model, derived using an accepted ray-tracing
approach, satisfies the requirements of fit to the data and geological
plausibility. The travel-time picks, their uncertainty and their phase
assignment were taken from this given model and subjected to the
Metropolis method described above. For our data the threshold
condition for acceptance (rule 2 above) was set to 1400. This
represents a maximum allowable loss in the number of observed
picks fitted by a model of 38 compared with the final RAYINVR
inversion result. This represents 2.5% of the total number of picks. The
resulting PDF is shown in Fig. 5. A qualitative assessment gives the
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Fig. 6. ESP-11 velocity model projected onto WESTLINE deep seismic reflection profile
(see Fig. 1 for location). Velocities shown are in km/s. The key reflectors labeled are
based on Masson and Kidd (1986) as extrapolated onto WESTLINE by England and
Hobbs (1997).

expected results that the model is less well resolved with depth and
low velocity layers are less well resolved. Table 2 gives the results of
the analysis for the centre of each layer against the original model. The
agreement is good and, for all but one layer, the original model
velocity is within one standard deviation of the mean of the posteriori
PDF. The exception is layer 10, a low velocity layer, which is
constrained only by pre-critical reflections so there is a trade-off
between velocity and thickness. The inversion gave an acceptable
result for a 950 m thick layer with a velocity of 5.50 km/s whereas the
Metropolis search prefers a 820 m thick layer with a velocity of
4.79 km/s. Overlaying this model on a nearby WESTLINE (England,
1995) seismic reflection profile (Fig. 6) (Pearse, 2002) shows this layer
incorporates a bright reflection that is interpreted as a sill intrusion.
This thin layer is not detected in the wide-angle data though it does
have a strong influence on the full-waveform inversion of the pre-
critical data (Hobbs and Collier 1997) (Fig. 3). Examination of the
variance shows that the uncertainty is high for the low velocity layers
(5,10), where there is no reflection from the layer base to help
constrain the velocity (layer 12) and where the layers are thin (9,11).

5. Conclusions

The statistically based resolution analysis presented in this paper
represents a significant development on the current practice of
manual perturbations of single layers that ignores the knock-on
effects on fit of other parts of the model. The output plots give an
assessment of how the picked data constrains the model and can
possibly identify over- or under-parameterisation. Though individual
iterations are quick it is necessary to run several thousand models to
obtain a meaningful result. We demonstrate the method on ESP data
acquired over in the centre of the Rockall trough where sediment
structure is consistent with the 1-D assumption inherent in the ESP
method. This type of data was chosen as it is the simplest to invert as it
imposes this 1-D restriction which limits the number of model
parameters. Given this assumption we conclude that even with the
highest quality ESP data, the error on the travel-time picks is sufficient
to introduce uncertainty of typically 5% in the final model.

The key step in formulating the Metropolis algorithm for this type
of data is redefining the misfit parameter ( y?) to be weighted by the
total number of observed picks for a given phase rather than the
number of picks fitted which is model dependent.

For the simple 1-D model presented here we computed 20,000
iterations to constrain 24 parameters (12 layers), so approximately
1000 iterations per parameter. For more complex models, e.g. 2-D, the
number of parameters will increase. This would require a similar
increase in the number of iterations required to compute a robust
posteriori PDF. As the run-time for each iteration is largely determined
by the time taken to forward trace the rays through the model the
total time would also be a function of the number of shots and
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receivers in the dataset. This increase in total time maybe partly
addressed by imposing prior conditions which would need to be taken
into account when interpreting the posterior PDF. For 2-D models
interpretation of the determined uncertainty is also more complex
and will include errors introduced by unconstrained lateral variation
in velocity either in the original data or model parameterisation.
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