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Monte Carlo approach to the joint estimation of reservoir and elastic
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ABSTRACT

Inversion of seismic data and quantification of reservoir
properties, such as porosity, lithology, or fluid saturation, are
commonly executed in two consecutive steps: a geophysical
inversion to estimate the elastic parameters and a petrophysi-
cal inversion to estimate the reservoir properties. We com-
bine within an integrated formulation the geophysical and
petrophysical components of the problem to estimate the
elastic and reservoir properties jointly. We solve the inverse
problem following a Monte Carlo sampling approach, which
allows us to quantify the uncertainties of the reservoir esti-
mates accounting for the combination of geophysical data
uncertainties, the deviations of the elastic properties from the
calibrated petrophysical transform, and the nonlinearity of
the geophysical and petrophysical relations. We implement
this method for the inference of the total porosity and the
acoustic impedance in a reservoir area, combining petro-
physical and seismic information. In our formulation, the po-
rosity and impedance are related with a statistical model
based on the Wyllie transform calibrated to well-log data. We
simulate the seismic data using a convolutional model and
evaluate the geophysical likelihood of the joint porosity-im-
pedance models. Applying the Monte Carlo sampling meth-
od, we generate a large number of realizations that jointly ex-
plain the seismic observations and honor the petrophysical
information. This approach allows the calculation of margin-
al probabilities of the model parameters, including medium
porosity, impedance, and seismic source wavelet. We show a
synthetic validation of the technique and apply the method to
data from an eastern Venezuelan hydrocarbon reservoir, sat-
isfactorily predicting the medium stratification and adequate
correlation between the seismic inversion and well-log esti-
mates for total porosity and acoustic impedance.
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INTRODUCTION

Methods for inferring reservoir parameters, such as porosity,
hale volume, and fluid volume fractions, are based on two major
teps of estimation: the seismic and the petrophysical inversion. In
he former, knowledge about seismic wave propagation is used to
btain a description of the elastic properties in the reservoir, or seis-
ic attributes, from the seismic data. In the latter, petrophysical in-

ormation obtained from, or calibrated to, well-log data is used to es-
imate the reservoir parameters from the seismically derived param-
ters.

Current techniques separate these two inversion steps following
ifferent methods. Elastic parameters are estimated from partially
tacked seismic sections �e.g., Mukerji et al., 2001; Contreras et al.,
005� and then related to discrete facies and fluids with a statistical
odel built from the well-log data. Prestacked data are used to esti-
ate amplitude-variation-with-offset �AVO� parameters �e.g., Eids-

ik et al., 2004�, which are used in turn to estimate discrete facies and
uids using a statistical model based on well-log data. Reservoir pa-
ameters are estimated using a spatial statistical model conditioned
y elastic parameters and well-log data �Doyen, 1988; Contreras et
l., 2005� or using Monte Carlo simulations conditioned by elastic
arameters �Bachrach, 2006�. In all of these works, reservoir-param-
ter estimation is based on the previous seismic inversion step.

Concerning the petrophysical models used to relate reservoir and
eismically derived properties, different approaches have been fol-
owed. Deterministic models, based on either theoretical or empiri-
al information, describe in an exact way the relation between reser-
oir and elastic parameters. These models, such as those of Wyllie,
assman, and Archie, summarize fundamental behavior of the rock
roperties, although the actual core or well-log data do not match the
odel prediction exactly. Conversely, purely statistical models de-

cribe probabilities for the reservoir parameters conditioned by the
eismic-derived properties, or vice-versa, on the basis of the empiri-
al statistical characterization of the well-log data of the area. This is
he approach followed in the research of Doyen �1988�, Mukerji et
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l. �2001�, Eidsvik et al. �2004�, Larsen et al. �2006�, and Contreras
t al. �2005�. These models describe data variability, but they are
ery dependent on the spatial heterogeneity of the statistics and the
ize of the data set on which they are based. Finally, mixed models,
hich include basic petrophysical functions and describe the data
eviation from the function as a random variable that follow a statis-
ical model, are robust in honoring rock behavior and accurate in de-
cribing the parameters’ variability. This approach is followed in
ork by Bosch �2004�, Bachrach �2006�, and Loures and Moraes

2006�, and it is followed here as well.
A general strategy for combining the petrophysical and geophysi-

al inversion steps under a unified statistical inference framework is
roposed by Bosch �1999� and applied to the joint inversion of grav-
ty and magnetic data to infer discrete lithology �Bosch et al., 2001;
osch and McGaughey, 2001�. In this formulation, the likelihoods
ith the geophysical observations and the petrophysical relations

cross modeled properties are honored jointly in realizations of the
odel obtained with a Monte Carlo method. The formulation has

een further developed to account for the estimation of continuous
roperties, such as porosity, with application to reservoir description
Bosch, 2004�. In the latter work, a set of linearized equations is used
o update porosity and acoustic impedance jointly, fitting stacked
eismic data and petrophysical relations within uncertainties and
howing that the integrated inversion produces a better estimate than
stepwise procedure, particularly if the petrophysical transform is
onlinear.

The development of methods for combining the geophysical and
etrophysical inference steps involved in reservoir description is a
ajor motivation of the current work.An advantage of this approach

s that the petrophysical and geophysical information is combined,
ncreasing constraints on the model parameters and reducing uncer-
ainty in the estimates. In addition, an integrated formulation allows
dequate quantification of the uncertainty associated with combin-
ng the different components of the information. Using an integrated
tatistical formulation, we develop a Monte Carlo sampling ap-
roach to explore the model space, providing joint estimation of the
eservoir and the elastic parameters and detailed description of their
robability, i.e., full description of the parameter uncertainties.

The relation between the elastic and reservoir parameters follows
mixed model, based on a petrophysical relation and a statistical de-
cription of the deviations from the relation. We employ Markov
hain Monte Carlo techniques to generate a large number of model

ealizations that jointly honor the petrophysical and geophysical
ikelihoods and prior geostatistical information about the porosity.

Joint inverse problem

Reservoir
model

parameters

Geostatistical
information

Petrophysical
information

Geophysical
information

Geophysical
survey data

Elastic
model

parameters
Seismic
data

Petrophysical inversion Geophysical inversion

igure 1. Types of information, model parameters, and data spaces
ncluded in the inference problem. Black arrows indicate the sense
f the forward problem.
he method is applied to data from an eastern Venezuelan hydrocar-
on reservoir to obtain estimates and marginal probabilities of po-
osity and acoustic impedance. A preliminary description of this ap-
roach is shown by Bosch and Fernández �2003� and Bosch et al.
2006�.

Other methods to integrate the petrophysical and geophysical in-
ersion steps for reservoir characterization have focused on predict-
ng discrete lithology, as in the work by Torres-Verdin et al. �1999�
sing a simulated annealing technique and in the work of Gonzalez
t al. �2006� based on Monte Carlo sampling techniques. Larsen et
l. �2006� propose a method of integrated inversion to infer discrete
ithology from seismic amplitude-variation-with-angle �AVA� data
nd show a synthetic 1D example.

THEORY AND METHOD

We consider a joint model space, describing reservoir and elastic
edium property fields, and a data space, describing seismic survey

bservations. Figure 1 is a schematic of the model parameter and
ata spaces. The joint model space can be regarded as the product of
he two subspaces, corresponding to the description of the geologi-
ally and physically related properties. Each of the subspaces could
e composed of several property fields.

To relate these subspaces and the data space, we introduce three
ypes of information into the inference problem: geostatistical,
etrophysical, and geophysical. The first type refers to the geostatis-
ical description of the reservoir fields, the second defines the rela-
ion between reservoir and elastic parameter fields based on a statis-
ical and petrophysical model, and the third is associated with the re-
ation between the elastic fields and the observations of the seismic
urvey �i.e., our forward simulation method that calculates seismic
ata from the elastic field and the model likelihood with the observa-
ions�.

tatistical formulation

We denote with mgeo a set of parameters that defines the reservoir-
roperty fields and with mphys the set of parameters that defines the
lastic-property fields. Table 1 shows a list of symbols used in this
ork. Following a Bayesian approach, we describe the knowledge
f the porosity and impedance profiles with a statistical model in
he parameter space. Given a joint model configuration m �

mgeo,mphys�, we define a probability density that combines the avail-
ble information and data. We start from the common equation for
tatistical inference �Tarantola, 2005�,

� �m� � cL�m���m� , �1�

here ��m� is the prior information probability density, L�m� is the
ata likelihood function, c is a normalization constant, and � �m� is
he posterior probability density. We decompose the prior density
nd the likelihood function in terms of the model subspaces already
efined,

�2�
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Reservoir parameters estimation from seismic amplitudes O31
The combined probability density is given by the product of three
actors, each one summarizing one of the types of information in-
luded in our problem. The probability density function �PDF�

geo�mgeo� describes the prior information in the reservoir property
elds. The conditional probability density ��mphys�mgeo� is a petro-
hysical likelihood function. It measures the probability of the elas-
ic property fields given a particular reservoir field configuration.
he factor L�mphys� is the geophysical likelihood function that mea-
ures the proximity between the observed and
alculated seismic data. It depends on the elas-
ic property field parameters. More information
bout this formulation can be found in Bosch
1999� and Bosch et al. �2001�.

The modeled seismic data are also dependent
n the seismic source function, which is not mea-
ured directly. It is commonly estimated from
ell logs and seismic data. To take into account

he uncertainty associated with estimating the
ource function, we include it as an additional
andom variable in the statistical model. Thus, we
xtend this formulation and compose the model
arameters by m � �mgeo,mphys,msou�, where

sou is the parameter set describing the source
avelet. The joint geophysical likelihood func-

ion can be formulated by

L�mphys,msou� � L�mphys�msou��sou�msou� ,

�3�

here the probability density �sou�msou� describes
he prior information about the seismic source
unction, and the seismic data likelihood,
�mphys�msou�, is conditioned by the source pa-

ameters.
The combined joint PDF, including the source

unction random parameters, is given by

�4�
We model each of the factors of the combined

DF with multivariate parametric functions and
et up a sampling algorithm to produce realiza-
ions of the combined density. The prior densities
or the reservoir and source parameters are mod-
led as multivariate Gaussian functions of the pa-
ameters,

�geo�mgeo� � c1 exp��
1

2
�mgeo

� mgeo prior�TCgeo
�1

��mgeo � mgeo prior�� ,

�5�

Table 1. List

Symbol

mphys

mgeo

msou

m

dobs

dcalc

� �mphys,mgeo

�geo�mgeo

�sou�msou

��mphys�m

L�mphys,m

L�mphys�m

mgeo prio

msou prio

c,c1,c2

g�mphys�

f�mgeo�

Cdat

Cgeo

Csou

Cphys�geo

�

�*

Z

Vmatrix

Vfluid

�matrix

�fluid
�sou�msou� � c2 exp��
1

2
�msou � msou prior�TCsou

�1

��msou � msou prior�� , �6�

sic symbols used to formulate the inverse problem.

Description

Elastic property model parameter array

Reservoir property model parameter array

Seismic source wavelet model parameter array

Joint model parameter array

Observed seismic data

Calculated seismic data

Joint posterior probability density

Prior probability density on the reservoir
parameters

Prior probability density on the source wavelet

Probability density of the elastic property
parameters conditioned by the reservoir parameters

Joint seismic likelihood function

Seismic likelihood function conditioned by a
known source configuration

Prior reservoir property model configuration

Prior seismic source wavelet model configuration

Normalization constants

Function solving the geophysical forward problem

Function providing the mean model elastic
parameters conditioned by the model reservoir
parameters

Data covariance matrix

Prior covariance matrix for the reservoir model
parameters

Prior covariance matrix for the source model
parameters

Prior covariance matrix for the elastic model
parameters conditioned by the reservoir model
parameters

Layer total porosity

Layer logarithmic porosity

Layer acoustic impedance

Rock matrix compressional velocity in Wyllie
relation

Rock fluid compressional velocity in Wyllie
relation

Rock matrix mass density in Wyllie relation

Rock fluid mass density in Wyllie relation
of ba

,msou�

�

�

geo�

sou�

sou�

r

r
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O32 Bosch et al.
here mgeo prior and msou prior are the reservoir and source parameters
xpected from the prior information, Cgeo and Csou are the corre-
ponding covariance matrices, c1 and c2 are normalization constants,
nd the superscript T indicates array transposition. The normaliza-
ion constants are not needed for the implementation of the sampling
lgorithms.

The geophysical likelihood is defined as a Gaussian function of
he deviations of the observed seismic data dobs and the seismic data
alculated from the model configuration dcal. The latter depends on
he function that simulates the seismic response of the model dcal

g�mphys,msou�, commonly a nonlinear function. Thus, we model
he geophysical likelihood as follows:

L�mphys�msou� � exp��
1

2
�dobs � g�mphys,msou��T

�Cdat
�1�dobs � g�mphys,msou��� , �7�

ith Cdat the data covariance matrix.
Similarly, the petrophysical likelihood function is modeled as a
ultivariate Gaussian function of deviations between the physical
odel parameters mphys, and their corresponding value is predicted

y a petrophysical function of the reservoir parameters f�mgeo�, com-
only a nonlinear function:

��mphys�mgeo� � exp��
1

2
�mphys � f�mgeo��TCphys�geo

�1

��mphys � f�mgeo��� . �8�

mgeo prior Cgeo

Cphys geo g(mphys geo, msou)

mgeo

f(mgeo) msou prior

msou

dcal

mphys

Csou

Cdat dobs

igure 2. Parameters involved in the inference problem and their re-
ations. Enclosed in ovals: random parameters defining medium
roperties, source function, and calculated seismic data. Enclosed in
oxes: nonrandom parameters and functions defining the proba-
ility model for the random parameters and their relations. Arrows
ndicate dependencies with nonrandom parameters �thin arrows�
nd random parameters �thick arrows�. Symbols are described in
able 1.
Modeling the four factors shown in equations 5–8 fully defines
he combined probability in equation 4. The combined probability
epends on the seismic observed data, functions f�mgeo� and
�mphys,msou� solving the petrophysical and geophysical forward
roblems correspondingly, mean priors for the source wavelet and
he reservoir fields, and covariance matrices for data misfit, petro-
hysical misfit, source, and reservoir prior densities. Figure 2 graphs
he relations between model parameters, statistical parameters, and
ata.

Note that the petrophysical and geophysical likelihoods have
een defined with Gaussian functions of the deviations between
odel parameters and nonlinear functions f�mgeo� and g�mphys,msou�.
hus, these likelihoods are not Gaussian functions of the model pa-

ameters; neither is the combined probability density a Gaussian
unction of the model parameters. Depending on the geophysical
nd petrophysical forward functions, the combined density may be a
omplicated, eventually multimodal probability density.

onte Carlo sampling

Two major approaches can be followed to solve the inference
roblem based on the combined probability density �equation 4�:
ampling or optimization. An optimization approach consists of a
earch for a maximum of the combined PDF, as described by Bosch
2004� for a similar problem. A sampling approach consists of pro-
ucing a large set of joint model �reservoir-elastic properties� real-
zations in proportion to the combined probability. A sampling ap-
roach can provide a full description of the probability distributions
nd account for multiple modes in the solution, although this tech-
ique is more expensive computationally than the optimization ap-
roach.

Using Monte Carlo integration, probabilities can be calculated
traightforwardly from the set of realizations of the probability den-
ity � �m�, approximating the probability integral by a summation
ver the realizations normalized by their number. To explain two of
he most common operations, let us consider a set of N realizations of
he joint reservoir-elastic model �m1,m2,m3, . . . ,mN� and an arbi-
rary function h�m�, defined over the model space M. The expected
alue of the function h�m� for our true reservoir is shown in

E�h	 � 

M

h�m�� �m�dm �
1

N
�
n�1

N

h�mn� . �9�

In particular, considering any volume of the model space A being
subset of the model parameter space and an indicator function I�m�

hat takes a value of one if m�A and 0 if m�A, the probability of
nding our true reservoir configuration within the volume A is as fol-

ows:

p�m � A� � E�I	 � 

M

I�m�� �m�dm �
1

N
�
n�1

N

I�mn� .

�10�

Errors in the integral approximation tend to zero as the number of
ealizations N increases. Thus, model parameter probabilities and
xpected values can be estimated via simple computation of averag-
s over the model realizations.

There is significant work in the discipline of statistics and related
elds about algorithms to sample probability densities, and many

echniques have been developed. For large parameter spaces and
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Reservoir parameters estimation from seismic amplitudes O33
omplex probability densities, most of these algorithms are based on
arkov chains. The basic procedure is to start in an arbitrary config-

ration of model parameters, generating a chain of realizations by
erturbing groups of model parameters iteratively. The way to modi-
y the parameters follows statistical rules, which are applied at each
teration to warrant the convergence of the chain to a set of samples
f the probability density. The choice of adequate and efficient sam-
ling algorithms depends on the case, according to the dimensionali-
y of the parameter space and the type of PDF, their conditionals, and
actors.

In this work, we develop a sampling algorithm adapted to the rela-
ion between parameters and the specific structure of the combined
robability density �in equation 4�, combining several well-known
ampling techniques: multivariate Gaussian, Gibbs, and metropolis
amplers. We perform multivariate Gaussian simulations on subsets
f model parameters, with basis on univariate Gaussian simulations
f each parameter.

For this purpose, we use the common method of the product with a
quare root of the model covariance matrix, y � C1/2x, where x are
ndependent Gaussian deviates of unitary variance and y are Gauss-
an deviates with covariance C. We use the Gibbs sampler to expand

arginal sampling of groups of parameters to all the parameter
pace. The Gibbs sampler is a technique for generating realizations
f a multivariable probability by sampling from marginals of the
robability over reduced subsets of the parameters, which are select-
d in sequence or randomly to cover the complete set of parameters.

In our method, we set up a Markov chain to sample from the prior
robability densities over the reservoir properties �geo�mgeo� and the
eismic source parameters �sou�msou� by multivariate Gaussian simu-
ation from marginals of groups of parameters randomly selected at
ach step of the chain following a Gibbs sampling method. Sampling
s extended to the physical parameter space by calculating the petro-
hysical transform of the reservoir parameter realization mgeo

n , where
indicates the current step of the chain, and then adding Gaussian

eviates of the appropriate covariance:

mphys
n � f�mgeo

n � � Cphys�geo
1/2 x . �11�

ere, x are unitary variance independent Gaussian deviates. By re-
eating this procedure, we set up the chain convergent to the joint
rior PDF over the model parameter space:

�12�
We use the prior chain and the metropolis algorithm to produce a
arkov chain convergent to the combined probability density

equation 4�. Let us assume we have generated a realization mn

�mphys
n ,mgeo

n ,msou
n � in the current step of the chain n, with geophys-

cal likelihood function L�mn� � L�mphys
n �msou

n �, and want to pro-
uce the realization corresponding to the next step, n � 1. The me-
ropolis sampler proceeds in the following way:

� Draw a candidate realization mcand with a step forward to the
chain convergent to the joint prior probability density.

� Simulate the seismic data corresponding to this realization and
calculate the geophysical likelihood function L�mcand�.

� Accept the candidate realization as next step of the chain,
mn�1 � mcand, with probability p � min�1,�mcand�/L�mn�	.
� If the candidate is rejected, repeat in the chain the current real-
ization, mn�1 � mn.

� Go to operation 1 for the next step.

The chain generated in this way is convergent to the combined
robability density �equation 4�. Work by Hastings �1970�, Geyer
1992�, Tierney �1994�, Smith and Roberts �1993�, Mosegaard and
arantola �1995�, and Bosch �1999� are sources of additional infor-
ation on the Markov-chain Monte Carlo sampling methods de-

cribed.

eophysical, petrophysical, and geostatistical modeling

In this work, we consider the case of inverting short-offset seismic
tacked and time-migrated data, which we simulate as zero-offset
eismic data reflected in a horizontally layered medium. We parame-
erize the medium in time as a series of homogeneous horizontal lay-
rs described by acoustic impedance and total porosity. Time thick-
ess of the layers is uniform and related with the seismic vertical res-
lution, approximately one-quarter of the dominant seismic period.
ith this setting, we independently invert each common-depth-

oint �CDP� trace in the seismic volume, estimating a 1D model of
coustic impedance and total porosity per CDP location.

Our description of the reservoir is conditioned by the type of data.
ecause the stacked short-offset reflection data are influenced most-

y by acoustic impedance, the latter is the natural choice for the phys-
cal property to include in the medium model. Conversely, acoustic
mpedance in clastic rocks commonly is influenced strongly by total
orosity. Hence, we select this property to characterize the reservoir
n our model. Other reservoir properties affect the acoustic imped-
nce. We model the impedance with a deterministic component de-
endent of porosity and a random component that embodies the ad-
itional effects, which are statistically characterized from well-log
ata. Our method also would be valid for other reservoir properties
trongly related to acoustic impedance and could be case dependent.

more complete description, including facies and fluids, could be
onsidered, particularly for inverting prestacked seismic data, but it
s beyond the scope of the current example.

The seismic data are simulated from a realization of the acoustic
mpedance by calculating the reflectivity series and convolving it
ith the source wavelet. This operation provides us with the geo-
hysical forward function g�mphys,msou� considered in equation 7 of
he geophysical likelihood function. This simulation method does
ot account for all phenomena involved in wave propagation and is
learly one-dimensional in the medium description for each CDP lo-
ation. However, this type of simulation is used widely in inversion
lgorithms applied to reflection seismic data because of its simplici-
y and low computational cost.

In particular, for a Monte Carlo method, where a large number of
epeated simulations are generated, the computational cost is a rele-
ant issue in selecting the forward simulation algorithm. However,
here is no limitation in the present formulation for considering a

ore elaborate seismic simulation method, such as finite differences
r a reflectivity calculation in a 3D model. Finally, the data covari-
nce matrix in this formulation, Cdat in equation 7, characterizes the
ombined data uncertainty that represents the addition of observa-
ion, simulation, and modeling error variances.

For the relation between total porosity and acoustic impedance,
e use a mixed model described in equation 11. We model the acous-

ic impedance as a random field conditioned by the total porosity
eld, with a central value that is a petrophysical transform of the po-
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O34 Bosch et al.
osity f�mgeo� plus multivariate Gaussian deviations. Here, we use a
elation directly derived from the Wyllie transform for the compres-
ional velocity �Wyllie et al., 1956� and corresponding to density as
he petrophysical transform of the porosity to acoustic impedance,

Z��� � Vmatrix �matrix

�1 � �
1 �
�fluid

�matrix
��

�1 � �
1 �
Vmatrix

Vfluid
�� , �13�

ith Z being the layer acoustic impedance, � the layer total porosity,
nd �fluid, �matrix, Vmatrix, and Vfluid the mass density and compressional
elocities for the pure rock matrix and pure fluid, respectively.

The total porosity, by definition, is a property bounded by zero and
ne and, as such, cannot be Gaussian distributed. For all statistical
odeling, we use the logarithmic porosity, which is the logarithm of

he pore and matrix volume ratio, instead of the porosity as the model
roperty. The logarithmic porosity is defined conveniently in the
omplete real axis and can be modeled with Gaussian densities. Fig-
re 3 shows Gaussian probability densities defined in the domain of

able 2. Petrophysical parameters and statistics used in the s
he method.

tatistical parameter Value

ogarithmic porosity prior mean �1.735 �corr
0.15 porosity

ogarithmic porosity prior standard deviation 0.7

ogarithmic porosity covariance function Spherical mo
of 60 ms

mpedance standard deviation from transform 106 kg s�1 m�

mpedance deviation covariance function Spherical mo
of 60 ms

yllie transform parameter Vmatrix 5600 m/s

yllie transform parameter Vfluid 1587 m/s

yllie transform parameter �matrix 2600 kg/m3

yllie transform parameter �fluid 1000 kg/m3

eismic data misfit standard deviation 5% of seismi

eismic data misfit covariance function Time uncorre
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igure 3. Gaussian probability densities in the logarithmic porosity
omain and the corresponding densities in the porosity domain.
he logarithmic porosity and the corresponding densities in the do-
ain of the porosity. The resulting model for the probability in the

orosity domain is similar to the lognormal near the zero bound, op-
osite lognormal close to the one bound and similar to the Gaussian
t the middle of the range.

The transformation of the porosity to the logarithmic porosity �*

s given by �* � ln�� /�1 � ��	, whereas the inverse transforma-
ion is � � exp��*	/�1 � exp��*	�. The impedance transform �re-
ation 13� in terms of the logarithmic porosity is

Z��*� � Vmatrix �matrix


1 � exp��*	
�fluid

�matrix
�


1 � exp��*	
Vmatrix

Vfluid
� . �14�

We calibrate the petrophysical transform to the reservoir data by
djusting the �fluid, �matrix, Vmatrix, and Vfluid to optimal values that pro-
uce a best fit of the well-log data in the time window of interest. We
ssume these parameters of the petrophysical transform are uniform
or this time window. This is an approximation because fluid and ma-
rix elastic properties are variable with the reservoir stratification.
he deviations from the relation, caused by local variations of fluids
nd matrix properties, are characterized statistically to obtain the co-
ariance matrix Cphys�geo in equations 8 and 11, needed for the mixed
etrophysical model explained in the previous section. Thus, we ac-
ount for porosity-variation effects in the deterministic component
f our impedance model �the Wyllie transform� and for facies and
uid effects in the random component that characterizes deviations
rom the transform.

Concerning the geostatistical model of the logarithmic porosity,
e calculate from the well-log data the mean logarithmic porosity in

he window of interest and characterize the deviations from the mean
o obtain the covariance matrix Cgeo used in equation 5.

SYNTHETIC TEST

We tested our sampling algorithms with a numerical model. In this
ase, we did not use a specific data set to calibrate the porosity-im-

pedance relation or characterize the property sta-
tistics. Table 2 shows statistical and petrophysical
parameters that we used to build a joint porosity-
impedance realization taken as the true medium
for this example. The covariance functions de-
scribed are one dimensional, as are the porosity
and impedance models. The seismic trace com-
puted by convolving a source function with the
reflectivity series obtained from the true imped-
ance profile was taken as the observed data. We
ran the sampling algorithm described in the previ-
ous section, producing a large chain of joint po-
rosity-impedance realizations, starting from a
model configuration corresponding to a uniform
mean prior porosity and acoustic impedance.

Figure 4 shows a curve of data residuals versus
the iterations of the Monte Carlo method, plotted
for two different iteration ranges. Each iteration
involves testing a perturbation of the porosity or
impedance applied in a subset of layers taken ran-
domly and recalculating the seismic trace. The
vertical axis indicates the chi-squared statistic of

ic test of

ing to

th a range

th a range
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he residuals. This is computed by the sum of squared differences be-
ween calculated and observed seismic amplitudes divided by the
ata variance and the number of data samples. The horizontal axis
ndicates the number of steps in the Markov chain, each one associat-
d with an accepted or rejected perturbation of the porosity-imped-
nce model configuration.

The first phase of the chain, associated with the starting configura-
ion and large residuals, is called the burn-in phase. Once residuals
re reduced, the joint porosity-impedance model realizations satis-
actorily explain the seismic data within the data errors. This is
alled the sampling phase. Realizations produced during the sam-
ling phase are considered samples from the combined probability
ensity. Figure 4 also shows a curve indicating the progress of the
oint data and model residuals, calculated by adding the correspond-
ng chi-squared statistics for the seismic data residuals, the imped-
nce deviations from the Wyllie transform of the porosity, the poros-
ty deviations from the prior porosity, and the source wavelet devia-
ion from the prior estimate.

The model configurations were modified during the sampling
hase, but they remain within the geophysical and petrophysical
ikelihoods, as shown in Figures 5 and 6. Figure 5 shows eight real-
zations taken at regular intervals in the sampling phase of the chain,
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igure 4. Progress with the iterations in the sampling algorithm of
he chi-squared seismic amplitude residual �black line� and the chi-
quared joint data and model residuals �gray line�: �a� 50,000 itera-
ions; �b� 500,000 iterations.
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igure 5. Eight joint porosity-impedance realizations taken at regu-
ar intervals from the sampling chain and their corresponding calcu-
ated seismic data �various color lines�. Superimposed are the true

odel configuration and the observed data �black lines�. The gray
and shows one standard deviation of data uncertainty centered in
he observed data. Initial model configurations for porosity and im-
edance are shown with a straight blue line.
ll fitting the seismic observed data within data uncertainties. They
ndicate the features and variability of the total porosity and the
coustic impedance. Figure 6 shows the porosity and impedance
rossplot for the same realizations shown in Figure 5. The solid line
ndicates the petrophysical transform �i.e., Wyllie relation�, with pa-
ameters indicated in Table 2, and the gray area plus or minus one
tandard deviation for deviates from the relation. This figure illus-
rates that joint porosity-impedance realizations also honor the
etrophysical information prescribed in the petrophysical likelihood
unction.

We obtained 480,000 realizations from the sampling phase of the
hain. From this set of realizations, we computed the expected value
f the porosity and impedance and the marginal probabilities for the
orosity and impedance as a function of two-way reflection time.
hese computations are straightforward averages of model realiza-

ions within the sampling phase, as described by equations 9 and 10.
igure 7 shows the cumulative marginal probability distribution for
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igure 6. Layer acoustic impedance and total porosity �color circles�
or the eight realizations shown in Figure 7, displayed with a hori-
ontal axis corresponding to �a� the logarithmic porosity and �b� the
orosity. The gray band shows one standard deviation of the loga-
ithmic porosity in the statistical model that links the two properties,
entered at the Wyllie petrophysical transform �black line�.
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he porosity and the impedance, the porosity and impedance estimat-
d by the inversion, and the true porosity and impedance profiles.
he figure shows adequate prediction of the true values for the syn-

hetic test, with identification of major stratification depicted by low
nd high porosity and corresponding high and low impedance. The
orrelation between estimated and true properties was 0.91 for the
coustic impedance and 0.87 for the total porosity.

For comparison with these results, we made the calculations using
he same Monte Carlo sampling techniques adapted to the corre-
ponding formulation in separate estimation steps: �1� inverting the
eismic data to estimate the acoustic impedance �with independence
rom the porosity� and �2� transforming the estimated impedance to
orosity with the inverse Wyllie relation. Table 3 compares the joint
nd separate inversions based on the correlation between the esti-
ated and true porosity and impedance and the rms estimation error.
he results of the joint inversion are correlated better with the true
orosity and impedance. In addition, the rms estimation error is
maller for the joint inversion results than for those corresponding to
he separate inversion — approximately 8% smaller for the imped-
nce and 23% smaller for the porosity. From a mathematical point of
iew, the joint inversion can be decoupled in two separate steps only
n the case of a linear petrophysical transform �Bosch, 2004�. The re-
erred work shows additional synthetic examples comparing joint
nd separate inversions, solved with an optimization method.

APPLICATION TO SEISMIC AND WELL-LOG
RESERVOIR DATA

We applied our method to a data set from an eastern Venezuelan
il reservoir. This reservoir is in a formation of clastic rocks charac-
erized by sequences of sand and shale. Fluids filling the pores are
rine and oil; no gas is present. First, we upscaled the acoustic im-
edance and total porosity profiles derived from well-log data to the
orresponding seismic scale �Figure 8�. Appropriate upscaling for
he total porosity is the arithmetic average of the small layers’ total
orosities. The impedance does not upscale in the same way; we
sed a relation that results from the combination of the Backus aver-
ge for the compressional velocity and the arithmetic average for the
ass density. Using a regression method, we adjusted Wyllie trans-

orm parameters �fluid, �matrix, Vmatrix, and Vfluid in the time window of
nterest to fit the actual upscaled well data. Figure 9 shows the total
orosity and acoustic impedance crossplot derived from the well-log
ata, superimposed on the Wyllie transform calibrated to fit the data.

able 3. Prediction rms error and correlation factor between
redicted and true property values obtained with the joint
nd two-step inversion approaches.

escription
Joint

inversion
Two-step
inversion

redicted true porosity correlation 0.87 0.82

redicted true logarithmic porosity
orrelation

0.84 0.78

redicted true impedance correlation 0.91 0.89

orosity prediction root mean square
rror

0.043 0.053

ogarithmic porosity prediction rms error 0.33 0.43

mpedance prediction rms error �kg/m s2� 0.85�106 0.92�106
In the well-log data, we also characterized the deviations of the
coustic impedance from the corresponding values predicted by the
yllie transform of the porosity by calculating the deviation covari-

nce for different time lags and modeling the covariance function.
igure 10a shows the covariance function for the deviations of the
coustic impedance from the petrophysical transform �i.e., the cali-
rated Wyllie transform� and the modeled covariance function. To
odel the covariance function, we used a mixed model: the addition

f a nugget term, a Gaussian term, and an exponential term, with pa-
ameters fitted to the covariance data. With this model, we defined
he covariance matrix Cphys�geo in equations 8 and 11. By characteriz-
ng the petrophysical transform deviation covariance and applying
orresponding deviations in the statistical petrophysical modeling,
e accounted for the impedance variability associated with factors
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igure 8. �a� Total porosity and �b� acoustic impedance plots ob-
ained from the well-logged data �gray line� and the corresponding
rofile upscaled to a 6-ms sampling after appropriate averaging of
hin layer values �black line�.
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ained from the well-logged data after scaling to the model sampling
nterval of 6 ms �black circles�, the Wyllie transform with parame-
ers obtained by regression to fit the data �black line�, and the one
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hat affect the impedance in addition to the porosity, such as varia-
ions in fluids and lithology.

Similarly, we characterized the logarithmic porosity obtained
rom the well-logged data by estimating the mean logarithmic po-
osity and the covariance function. The covariance for different time
ags and the modeled covariance function are shown in Figure 10b.

e used the modeled covariance function to define the prior covari-
nce matrix for the porosity Cgeo and the mean logarithmic porosity
o define the prior expected porosity profile mgeo prior in equation 5. In
his case, we used a mixed model to fit the covariance data, adding a
ugget term, an exponential term, and a damped cosine term. The
atter was appropriate to model the oscillating component of the co-
ariance that results from the stratified nature of the porosity profile,
riven by the shale-sand sequences.

We used the common least-squares method described by Olden-
urg et al. �1991� to estimate a source wavelet at the location of the
vailable well data. This method combines the impedances calculat-
d from the well-log data with the measured seismic data at the well
ocation. The source wavelet is parameterized by the amplitude sam-
led at regular time intervals, corresponding to the same sampling
nterval of the seismic data. The resulting wavelet is taken as the cen-
er of the prior probability density for the wavelet information

sou prior in equation 6. We allowed variability of the model source
avelet to adapt to spatial changes, with a standard deviation from

he estimated wavelet of 20% of the total amplitude range of the
avelet.
We applied the inversion method described to generate 1 million

oint porosity-impedance realizations, fully exploring the solution
pace. To obtain a volume of the estimated properties, we applied
his procedure in a trace-by-trace manner to a seismic cube in the
rea. Figure 11 shows the estimated total porosity and acoustic im-
edance for a section of this seismic cube. The estimated values were
alculated by the average values of the realizations in the sampling
hase. The acoustic impedances and porosities derived from the well
ata were superimposed at the well location for comparison with the
redicted porosity and impedance fields. In addition, we superim-
osed the observed seismic data all through the section for compari-
on with the estimated property fields.

In Figure 11, we can highlight the coherence between the stratifi-
ation in the estimated porosity and impedance fields and the corre-
ponding observed seismic refection events. Vertical resolution in
he estimated fields reaches, in some section locations, the maxi-
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igure 10. Time covariance for �a� deviations of the well-logged im-
edance from the Wyllie transform of the well-logged porosity and
b� the total porosity. The covariance calculated from the well-
ogged data is shown in black circles joined by gray line segments;
he corresponding covariance function model fitted to the data is
hown with a black line.
um expected model resolution of 6 ms, approximately one-quarter
f the dominant period of the seismic signal, showing a thin stratum
hat can be followed across the traces. In addition, the figure shows
dequate correlation between the strata of high and low porosities
nd impedances, estimated by the seismic inversion and the corre-
ponding estimate at the well location from the wire logs. A normal
ault present in this reservoir, with a vertical displacement of approx-
mately 20 ms, is also shown in the figure, with a corresponding dis-
lacement that can be identified in the property fields.

As explained, the model parameters included the source wavelet,
hich is jointly estimated by the Monte Carlo inversion method.
igure 12 shows the prior estimated source wavelet and ten realiza-

ions of the source wavelet taken at regular intervals from the sam-
ling chain at the location of the well. This realization shows a slight
orrection from the prior estimated wavelet. Posterior probabilities
or the source wavelet amplitudes are shown in the same figure, as is
he posterior best estimate, which is calculated by the average of the
ampled wavelet realizations.

A summary of the information obtained from our Monte Carlo in-
ersion at the well is shown in Figure 13. The figure shows a cumula-
ive marginal probability plot for the porosity and impedance calcu-
ated from the total sampled realizations. The posterior expected val-
es of the total porosity and acoustic impedance are superimposed
nto the probability plot. These are calculated by averaging the total
orosity and acoustic impedance realizations in the sampling phase
f the chain. The total porosity and acoustic impedance calculated
rom the well-log data also are plotted. The basic stratification can be
dentified by zones of low and high porosity, corresponding to zones
f high and low impedance, in both the probability plots and the esti-
ated time profiles. The same sequences are indicated by porosity

nd impedance calculated from the well-log data. Well-log-derived
nd seismic-derived values show a significant correlation of 0.7 for
he acoustic impedance and 0.69 for the total porosity.

Figure 13 shows the observed seismic data and a one standard de-
iation of the data uncertainty bar prescribed for the inversion,
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hich corresponds to the 15% of the observed seismic data ampli-
ude range. The calculated data from a realization taken at random
re also shown. All joint model realizations explain the seismic data
ithin data uncertainties and also honor the petrophysical transform
ithin the prescribed deviations.
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igure 12. �a� Prior seismic source �thick dark blue line� and 10 seis-
ic source realizations pulled at regular intervals from the sampling

hase at the well location �various colored lines�. �b� Cumulative
robability plot for the seismic source, the prior seismic source �blue
ine�, and the average of realizations in the sampling phase �black
ine�.
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igure 13. �a� Porosity and �b� impedance cumulative probability
lots with the mean porosity and impedance profiles obtained as a re-
ult of the inversion �black lines� and the porosity and impedance
rofiles obtained from the well-logged data �red lines�. �c� One-stan-
ard-deviation data uncertainty band is centered at the observed
eismic data �red line�, and seismic data are calculated from a model
ealization taken at random �black line�.
DISCUSSION

We describe a general methodology for the estimation of reservoir
arameters from seismic amplitudes, which we implement in a field
ase assuming: �1� a one dimensional reservoir model per stacked
race, �2� the simulation of the seismic data by convolving a source
avelet with the reflectivity series calculated from the model, and

3� a strong relation between the total porosity and the acoustic im-
edance in the area. The latter is a condition that we confirm with our
ell-log data. However, the general formulation we propose is not

estricted by these assumptions. More complete seismic simulation
echniques or petrophysical models could be used within a similar
ramework.

Our choice of reservoir properties in the joint model exploits the
elation between the total porosity and the acoustic impedance,
hich is described by the Wyllie transform. This relation is valid for
wide range of rocks, including clastic environments as the one we
onsidered. In addition to the porosity, the Wyllie transform depends
n parameters that characterize the elastic behavior of the matrix and
he fluid filling the pores, which are variable within the reservoir. We
se uniform elastic parameters for the transform, optimized to the
est fit of the well data within the time window of interest. Thus, fac-
ors such as fluid and facies variations produce deviations from the
ransform that are accounted in the random component of our petro-
hysical model. The deviations and their time covariance are charac-
erized from the well-log data and included in the model. Our mixed
etrophysical model �deterministic mean plus random deviates�
oes not assume an exact relation between the porosity and the im-
edance, and statistically honors the dispersion from the Wyllie
ransform.

Other reservoir properties related with the acoustic impedance
ould be used in the joint reservoir description. Although it was out
f the scope of the present example, a more complete petrophysical
odel could be considered, including facies and fluid parameters as

eservoir properties. It would depend on the specific case whether a
et of reservoir parameters may be resolved by the seismic and petro-
hysical information. A natural extension of the method would be
he inversion of prestacked seismic data to estimate elastic parame-
ers and additional reservoir properties. Similarly, another promisso-
y line of development consists of including well log conditioning to
he model, which could increase vertical resolution close to the wells
nd warrant the model to honor the well data at well locations.

CONCLUSIONS

We integrate, under a unified petrophysical and geophysical in-
ersion scheme, different types of information and data that contrib-
te to the estimation of reservoir and elastic parameters. Specifically,
e invert poststacked short offset seismic data to infer the total po-

osity and the acoustic impedance fields, honoring petrophysical re-
ations calibrated to crossplots of well-log data. The joint formula-
ion helps to appropriately combine different uncertainties into the
nal reservoir field estimate: seismic data uncertainty, data devia-

ions from the petrophysical transform, and seismic source uncer-
ainty. The joint inversion method fully accounts for nonlinear rela-
ions between the seismic data, elastic parameters, and reservoir pa-
ameters.

Our formulation is made in a probabilistic inference framework
nd the solution consists in sampling realizations from the posterior
robability density, which results from the combination of geophysi-
al, petrophysical, and prior reservoir information. Hence, the po-
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Reservoir parameters estimation from seismic amplitudes O39
osity-impedance realizations jointly honor the complete set of in-
ormation. We compute from the realizations, expected values and
omplete descriptions of the marginal probability for the reservoir
nd elastic properties in the model.Although components of the pos-
erior probability are modeled with Gaussian functions, they are
valuated at nonlinear functions of the model parameters and the re-
ulting posterior probability is not Gaussian. The sampling method
pproach is general enough to account for non-Gaussian, complex,
ventually multimodal, posterior probability densities.

A synthetic test of the method showed very good correlation be-
ween predicted and true model values, both for porosity and imped-
nce. In this example, we illustrate that the joint inversion produces a
etter prediction of the reservoir and elastic field than the step-wise
nversion. The application to a field case also showed good correla-
ion between the porosity and impedance values estimated with the
nversion and the corresponding values estimated from well-log
ata. Although we used the well-log derived properties to calibrate
he petrophysical relationship between the porosity and the acoustic
mpedance, the actual information of the well derived properties, as
time profile, was not used to condition the estimation. Thus, the
ell data derived acoustic impedance and total porosity time profiles

emain a valid reference for comparison of the inversion results. The
resent method provides a full description of the result uncertainty,
s illustrated by the marginal probability plots for the porosity and
mpedance. These model uncertainties account for the combination
f uncertainties corresponding to the geophysical and petrophysical
omponents of the inference problem.
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