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A Monte Carlo approach to the joint estimation of reservoir and elastic

parameters from seismic amplitudes

Miguel Bosch', Luis Cara', Juan Rodrigues’, Alonso Navarro?, and Manuel Diaz?

ABSTRACT

Inversion of seismic data and quantification of reservoir
properties, such as porosity, lithology, or fluid saturation, are
commonly executed in two consecutive steps: a geophysical
inversion to estimate the elastic parameters and a petrophysi-
cal inversion to estimate the reservoir properties. We com-
bine within an integrated formulation the geophysical and
petrophysical components of the problem to estimate the
elastic and reservoir properties jointly. We solve the inverse
problem following a Monte Carlo sampling approach, which
allows us to quantify the uncertainties of the reservoir esti-
mates accounting for the combination of geophysical data
uncertainties, the deviations of the elastic properties from the
calibrated petrophysical transform, and the nonlinearity of
the geophysical and petrophysical relations. We implement
this method for the inference of the total porosity and the
acoustic impedance in a reservoir area, combining petro-
physical and seismic information. In our formulation, the po-
rosity and impedance are related with a statistical model
based on the Wyllie transform calibrated to well-log data. We
simulate the seismic data using a convolutional model and
evaluate the geophysical likelihood of the joint porosity-im-
pedance models. Applying the Monte Carlo sampling meth-
od, we generate a large number of realizations that jointly ex-
plain the seismic observations and honor the petrophysical
information. This approach allows the calculation of margin-
al probabilities of the model parameters, including medium
porosity, impedance, and seismic source wavelet. We show a
synthetic validation of the technique and apply the method to
data from an eastern Venezuelan hydrocarbon reservoir, sat-
isfactorily predicting the medium stratification and adequate
correlation between the seismic inversion and well-log esti-
mates for total porosity and acoustic impedance.

INTRODUCTION

Methods for inferring reservoir parameters, such as porosity,
shale volume, and fluid volume fractions, are based on two major
steps of estimation: the seismic and the petrophysical inversion. In
the former, knowledge about seismic wave propagation is used to
obtain a description of the elastic properties in the reservoir, or seis-
mic attributes, from the seismic data. In the latter, petrophysical in-
formation obtained from, or calibrated to, well-log data is used to es-
timate the reservoir parameters from the seismically derived param-
eters.

Current techniques separate these two inversion steps following
different methods. Elastic parameters are estimated from partially
stacked seismic sections (e.g., Mukerji et al., 2001; Contreras et al.,
2005) and then related to discrete facies and fluids with a statistical
model built from the well-log data. Prestacked data are used to esti-
mate amplitude-variation-with-offset (AVO) parameters (e.g., Eids-
vik et al., 2004), which are used in turn to estimate discrete facies and
fluids using a statistical model based on well-log data. Reservoir pa-
rameters are estimated using a spatial statistical model conditioned
by elastic parameters and well-log data (Doyen, 1988; Contreras et
al., 2005) or using Monte Carlo simulations conditioned by elastic
parameters (Bachrach, 2006). In all of these works, reservoir-param-
eter estimation is based on the previous seismic inversion step.

Concerning the petrophysical models used to relate reservoir and
seismically derived properties, different approaches have been fol-
lowed. Deterministic models, based on either theoretical or empiri-
cal information, describe in an exact way the relation between reser-
voir and elastic parameters. These models, such as those of Wyllie,
Gassman, and Archie, summarize fundamental behavior of the rock
properties, although the actual core or well-log data do not match the
model prediction exactly. Conversely, purely statistical models de-
scribe probabilities for the reservoir parameters conditioned by the
seismic-derived properties, or vice-versa, on the basis of the empiri-
cal statistical characterization of the well-log data of the area. This is
the approach followed in the research of Doyen (1988), Mukerji et
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al. (2001), Eidsvik et al. (2004), Larsen et al. (2006), and Contreras
et al. (2005). These models describe data variability, but they are
very dependent on the spatial heterogeneity of the statistics and the
size of the data set on which they are based. Finally, mixed models,
which include basic petrophysical functions and describe the data
deviation from the function as a random variable that follow a statis-
tical model, are robust in honoring rock behavior and accurate in de-
scribing the parameters’ variability. This approach is followed in
work by Bosch (2004), Bachrach (2006), and Loures and Moraes
(2006), and it is followed here as well.

A general strategy for combining the petrophysical and geophysi-
cal inversion steps under a unified statistical inference framework is
proposed by Bosch (1999) and applied to the joint inversion of grav-
ity and magnetic data to infer discrete lithology (Bosch et al., 2001;
Bosch and McGaughey, 2001). In this formulation, the likelihoods
with the geophysical observations and the petrophysical relations
across modeled properties are honored jointly in realizations of the
model obtained with a Monte Carlo method. The formulation has
been further developed to account for the estimation of continuous
properties, such as porosity, with application to reservoir description
(Bosch, 2004). In the latter work, a set of linearized equations is used
to update porosity and acoustic impedance jointly, fitting stacked
seismic data and petrophysical relations within uncertainties and
showing that the integrated inversion produces a better estimate than
a stepwise procedure, particularly if the petrophysical transform is
nonlinear.

The development of methods for combining the geophysical and
petrophysical inference steps involved in reservoir description is a
major motivation of the current work. An advantage of this approach
is that the petrophysical and geophysical information is combined,
increasing constraints on the model parameters and reducing uncer-
tainty in the estimates. In addition, an integrated formulation allows
adequate quantification of the uncertainty associated with combin-
ing the different components of the information. Using an integrated
statistical formulation, we develop a Monte Carlo sampling ap-
proach to explore the model space, providing joint estimation of the
reservoir and the elastic parameters and detailed description of their
probability, i.e., full description of the parameter uncertainties.

The relation between the elastic and reservoir parameters follows
amixed model, based on a petrophysical relation and a statistical de-
scription of the deviations from the relation. We employ Markov
Chain Monte Carlo techniques to generate a large number of model
realizations that jointly honor the petrophysical and geophysical
likelihoods and prior geostatistical information about the porosity.

Joint inverse problem

Petrophysical inversion Geophysical inversion

Reservoir Elastic L
—> 1Smi
model model SZ:ta &
parameters parameters

Geostatistical Petrophysical
information information

Geophysical Geophysical
information  survey data

Figure 1. Types of information, model parameters, and data spaces
included in the inference problem. Black arrows indicate the sense
of the forward problem.

The method is applied to data from an eastern Venezuelan hydrocar-
bon reservoir to obtain estimates and marginal probabilities of po-
rosity and acoustic impedance. A preliminary description of this ap-
proach is shown by Bosch and Ferndndez (2003) and Bosch et al.
(2006).

Other methods to integrate the petrophysical and geophysical in-
version steps for reservoir characterization have focused on predict-
ing discrete lithology, as in the work by Torres-Verdin et al. (1999)
using a simulated annealing technique and in the work of Gonzalez
et al. (2006) based on Monte Carlo sampling techniques. Larsen et
al. (2006) propose a method of integrated inversion to infer discrete
lithology from seismic amplitude-variation-with-angle (AVA) data
and show a synthetic 1D example.

THEORY AND METHOD

We consider a joint model space, describing reservoir and elastic
medium property fields, and a data space, describing seismic survey
observations. Figure 1 is a schematic of the model parameter and
data spaces. The joint model space can be regarded as the product of
the two subspaces, corresponding to the description of the geologi-
cally and physically related properties. Each of the subspaces could
be composed of several property fields.

To relate these subspaces and the data space, we introduce three
types of information into the inference problem: geostatistical,
petrophysical, and geophysical. The first type refers to the geostatis-
tical description of the reservoir fields, the second defines the rela-
tion between reservoir and elastic parameter fields based on a statis-
tical and petrophysical model, and the third is associated with the re-
lation between the elastic fields and the observations of the seismic
survey (i.e., our forward simulation method that calculates seismic
data from the elastic field and the model likelihood with the observa-
tions).

Statistical formulation

We denote with m,, a set of parameters that defines the reservoir-
property fields and with my,, the set of parameters that defines the
elastic-property fields. Table 1 shows a list of symbols used in this
work. Following a Bayesian approach, we describe the knowledge
of the porosity and impedance profiles with a statistical model in
the parameter space. Given a joint model configuration m =
(Mo, M), we define a probability density that combines the avail-
able information and data. We start from the common equation for
statistical inference (Tarantola, 2005),

o(m) = cL(m)p(m), (1)

where p(m) is the prior information probability density, L(m) is the
data likelihood function, c is a normalization constant, and o (m) is
the posterior probability density. We decompose the prior density
and the likelihood function in terms of the model subspaces already
defined,

U(mphys’mgeo) = CL(mphys)w(mphys‘mgeo)pgeo(mgeo)' (
— -~ .

geophysics

2)

petrophysics  geostatistics
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The combined probability density is given by the product of three
factors, each one summarizing one of the types of information in-
cluded in our problem. The probability density function (PDF)
Peeo(My,) describes the prior information in the reservoir property
fields. The conditional probability density 77 (M, |/m,.,) is a petro-
physical likelihood function. It measures the probability of the elas-
tic property fields given a particular reservoir field configuration.
The factor L(m,,) is the geophysical likelihood function that mea-

sures the proximity between the observed and
calculated seismic data. It depends on the elas-
tic property field parameters. More information
about this formulation can be found in Bosch
(1999) and Bosch et al. (2001).

The modeled seismic data are also dependent
on the seismic source function, which is not mea-
sured directly. It is commonly estimated from
well logs and seismic data. To take into account
the uncertainty associated with estimating the
source function, we include it as an additional
random variable in the statistical model. Thus, we
extend this formulation and compose the model
parameters by m = (Mg, M,,,My,), where
my,, is the parameter set describing the source
wavelet. The joint geophysical likelihood func-
tion can be formulated by

L(mphys’ msou) = L(mphys|msou)psou(msou) >
3)

where the probability density py,,(my,,) describes
the prior information about the seismic source
function, and the seismic data likelihood,
L(m,,,jm,,,), is conditioned by the source pa-
rameters.

The combined joint PDF, including the source
function random parameters, is given by

U(mphyss mgeov msou)

= CL(mphys|msou)77(mphyslmgeo)pgeo(mgeo)psou(msou).
seismic petrophysics geostatistics  source

4)

We model each of the factors of the combined

PDF with multivariate parametric functions and

set up a sampling algorithm to produce realiza-

tions of the combined density. The prior densities

for the reservoir and source parameters are mod-

eled as multivariate Gaussian functions of the pa-
rameters,

1
pgeo(mgeo) =C eXp|: - E(mgeo

T —1
— My, prior) Cgeo
><(Ingeo — My, prior):| >

(5)

1
— T,
psou(msou) =0 eXp|: - _(msou — Mgy, prior) Csou

-1
2

X (msou — g, prior):| > (6)

Table 1. List of basic symbols used to formulate the inverse problem.

Symbol Description
11 F Elastic property model parameter array
m,, Reservoir property model parameter array
m,, Seismic source wavelet model parameter array

m Joint model parameter array
dps Observed seismic data
d.qc Calculated seismic data
0 (M My, M) Joint posterior probability density
Paco(Mgeo) Prior probability density on the reservoir
parameters
Prou(Myoy) Prior probability density on the source wavelet

m (mphys|mgeo)

L(mphys’ msou)

L (mphys msou)

mgeu prior
my,, prior
C,C1,C2

g(mphys)
f(mgen)

Cdal
Cgeo

Csou

C

phys|geo

¢
&
z

Vmalrix
v['luid

pmalrix

Priuid

Probability density of the elastic property
parameters conditioned by the reservoir parameters

Joint seismic likelihood function

Seismic likelihood function conditioned by a
known source configuration

Prior reservoir property model configuration
Prior seismic source wavelet model configuration
Normalization constants

Function solving the geophysical forward problem

Function providing the mean model elastic
parameters conditioned by the model reservoir
parameters

Data covariance matrix

Prior covariance matrix for the reservoir model
parameters

Prior covariance matrix for the source model
parameters

Prior covariance matrix for the elastic model
parameters conditioned by the reservoir model
parameters

Layer total porosity
Layer logarithmic porosity
Layer acoustic impedance

Rock matrix compressional velocity in Wyllie
relation

Rock fluid compressional velocity in Wyllie
relation

Rock matrix mass density in Wyllie relation
Rock fluid mass density in Wyllie relation
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where Mye, prior and My, rior are the reservoir and source parameters
expected from the prior information, C,, and C,,, are the corre-
sponding covariance matrices, ¢; and ¢, are normalization constants,
and the superscript 7 indicates array transposition. The normaliza-
tion constants are not needed for the implementation of the sampling
algorithms.

The geophysical likelihood is defined as a Gaussian function of
the deviations of the observed seismic data d,, and the seismic data
calculated from the model configuration d.,. The latter depends on
the function that simulates the seismic response of the model d.y
= g(myp,,, My,,), commonly a nonlinear function. Thus, we model
the geophysical likelihood as follows:

1
L(mphys|msou) = exXp| — E(dobs - g(mphys’msou))r

><Cd_anl(dobs - g(mphys’msou)) > (7)

with Cg, the data covariance matrix.

Similarly, the petrophysical likelihood function is modeled as a
multivariate Gaussian function of deviations between the physical
model parameters m,,, and their corresponding value is predicted
by a petrophysical function of the reservoir parameters f(m,,,), com-
monly a nonlinear function:

1 _
71-(n'lphyshngeo) = exp[ - E(mphys - f(mgeo))TCph;s\geo

><(l‘nphys - f(mgeo)):| . (8)

Mgeo prior

f(mgeo) ﬁ Mo prior Coou

cphys geo .E‘/ g(mphys geor msou)

Coat / \ doos

Figure 2. Parameters involved in the inference problem and their re-
lations. Enclosed in ovals: random parameters defining medium
properties, source function, and calculated seismic data. Enclosed in
boxes: nonrandom parameters and functions defining the proba-
bility model for the random parameters and their relations. Arrows
indicate dependencies with nonrandom parameters (thin arrows)
and random parameters (thick arrows). Symbols are described in
Table 1.

Modeling the four factors shown in equations 5-8 fully defines
the combined probability in equation 4. The combined probability
depends on the seismic observed data, functions f(mg,) and
g(my,,,,my,,) solving the petrophysical and geophysical forward
problems correspondingly, mean priors for the source wavelet and
the reservoir fields, and covariance matrices for data misfit, petro-
physical misfit, source, and reservoir prior densities. Figure 2 graphs
the relations between model parameters, statistical parameters, and
data.

Note that the petrophysical and geophysical likelihoods have
been defined with Gaussian functions of the deviations between
model parameters and nonlinear functions f(my.,) and g(m s, My,).
Thus, these likelihoods are not Gaussian functions of the model pa-
rameters; neither is the combined probability density a Gaussian
function of the model parameters. Depending on the geophysical
and petrophysical forward functions, the combined density may be a
complicated, eventually multimodal probability density.

Monte Carlo sampling

Two major approaches can be followed to solve the inference
problem based on the combined probability density (equation 4):
sampling or optimization. An optimization approach consists of a
search for a maximum of the combined PDF, as described by Bosch
(2004) for a similar problem. A sampling approach consists of pro-
ducing a large set of joint model (reservoir-elastic properties) real-
izations in proportion to the combined probability. A sampling ap-
proach can provide a full description of the probability distributions
and account for multiple modes in the solution, although this tech-
nique is more expensive computationally than the optimization ap-
proach.

Using Monte Carlo integration, probabilities can be calculated
straightforwardly from the set of realizations of the probability den-
sity o(m), approximating the probability integral by a summation
over the realizations normalized by their number. To explain two of
the most common operations, let us consider a set of N realizations of
the joint reservoir-elastic model {m',m?,m?, ..., m"} and an arbi-
trary function 2(m), defined over the model space M. The expected
value of the function 2(m) for our true reservoir is shown in

N

E[h] = f h(m)o (m)dm ~ 1 > h(m"). (9)
M N

n=1

In particular, considering any volume of the model space A being
asubset of the model parameter space and an indicator function /(m)
that takes a value of one if m € A and 0 if m & A, the probability of
finding our true reservoir configuration within the volume A is as fol-
lows:

N
p(m e A) = E[I] = f I(m)o(m)dm = 1 > I(m").
p N

n=1
(10)

Errors in the integral approximation tend to zero as the number of
realizations N increases. Thus, model parameter probabilities and
expected values can be estimated via simple computation of averag-
es over the model realizations.

There is significant work in the discipline of statistics and related
fields about algorithms to sample probability densities, and many
techniques have been developed. For large parameter spaces and
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complex probability densities, most of these algorithms are based on
Markov chains. The basic procedure is to start in an arbitrary config-
uration of model parameters, generating a chain of realizations by
perturbing groups of model parameters iteratively. The way to modi-
fy the parameters follows statistical rules, which are applied at each
iteration to warrant the convergence of the chain to a set of samples
of the probability density. The choice of adequate and efficient sam-
pling algorithms depends on the case, according to the dimensionali-
ty of the parameter space and the type of PDF, their conditionals, and
factors.

In this work, we develop a sampling algorithm adapted to the rela-
tion between parameters and the specific structure of the combined
probability density (in equation 4), combining several well-known
sampling techniques: multivariate Gaussian, Gibbs, and metropolis
samplers. We perform multivariate Gaussian simulations on subsets
of model parameters, with basis on univariate Gaussian simulations
of each parameter.

For this purpose, we use the common method of the product with a
square root of the model covariance matrix, y = C!’x, where x are
independent Gaussian deviates of unitary variance and y are Gauss-
ian deviates with covariance C. We use the Gibbs sampler to expand
marginal sampling of groups of parameters to all the parameter
space. The Gibbs sampler is a technique for generating realizations
of a multivariable probability by sampling from marginals of the
probability over reduced subsets of the parameters, which are select-
ed in sequence or randomly to cover the complete set of parameters.

In our method, we set up a Markov chain to sample from the prior
probability densities over the reservoir properties pye,(Mg,) and the
seismic source parameters pq,,(my,,) by multivariate Gaussian simu-
lation from marginals of groups of parameters randomly selected at
each step of the chain following a Gibbs sampling method. Sampling
is extended to the physical parameter space by calculating the petro-
physical transform of the reservoir parameter realization mg,, where
n indicates the current step of the chain, and then adding Gaussian
deviates of the appropriate covariance:

=f(m", ) + C (11)

m geo phys| geoX+

n
phys
Here, x are unitary variance independent Gaussian deviates. By re-
peating this procedure, we set up the chain convergent to the joint
prior PDF over the model parameter space:

p(mphys’mgeo’msou) = 7T(rnphys|n_lgeo)pgeo(n'lgeo)psou(rnsou)-
—_—— e ~——

geostatistics source
(12)

We use the prior chain and the metropolis algorithm to produce a
Markov chain convergent to the combined probability density
(equation 4). Let us assume we have generated a realization m"
= (m},,, my,,md,) in the current step of the chain n, with geophys-
ical likelihood function L(m") = L(m},|m%,), and want to pro-
duce the realization corresponding to the next step, n + 1. The me-
tropolis sampler proceeds in the following way:

petrophysics

1) Draw a candidate realization m* with a step forward to the
chain convergent to the joint prior probability density.

2)  Simulate the seismic data corresponding to this realization and
calculate the geophysical likelihood function L(me).

3) Accept the candidate realization as next step of the chain,
m"*! = m9, with probability p = min[1,(m)/L(m")].

4)  If the candidate is rejected, repeat in the chain the current real-
ization,m"*!' = m".
5) Gotooperation 1 for the next step.

The chain generated in this way is convergent to the combined
probability density (equation 4). Work by Hastings (1970), Geyer
(1992), Tierney (1994), Smith and Roberts (1993), Mosegaard and
Tarantola (1995), and Bosch (1999) are sources of additional infor-
mation on the Markov-chain Monte Carlo sampling methods de-
scribed.

Geophysical, petrophysical, and geostatistical modeling

In this work, we consider the case of inverting short-offset seismic
stacked and time-migrated data, which we simulate as zero-offset
seismic data reflected in a horizontally layered medium. We parame-
terize the medium in time as a series of homogeneous horizontal lay-
ers described by acoustic impedance and total porosity. Time thick-
ness of the layers is uniform and related with the seismic vertical res-
olution, approximately one-quarter of the dominant seismic period.
With this setting, we independently invert each common-depth-
point (CDP) trace in the seismic volume, estimating a 1D model of
acoustic impedance and total porosity per CDP location.

Our description of the reservoir is conditioned by the type of data.
Because the stacked short-offset reflection data are influenced most-
ly by acoustic impedance, the latter is the natural choice for the phys-
ical property to include in the medium model. Conversely, acoustic
impedance in clastic rocks commonly is influenced strongly by total
porosity. Hence, we select this property to characterize the reservoir
in our model. Other reservoir properties affect the acoustic imped-
ance. We model the impedance with a deterministic component de-
pendent of porosity and a random component that embodies the ad-
ditional effects, which are statistically characterized from well-log
data. Our method also would be valid for other reservoir properties
strongly related to acoustic impedance and could be case dependent.
A more complete description, including facies and fluids, could be
considered, particularly for inverting prestacked seismic data, but it
is beyond the scope of the current example.

The seismic data are simulated from a realization of the acoustic
impedance by calculating the reflectivity series and convolving it
with the source wavelet. This operation provides us with the geo-
physical forward function g(m,,,,, my,,) considered in equation 7 of
the geophysical likelihood function. This simulation method does
not account for all phenomena involved in wave propagation and is
clearly one-dimensional in the medium description for each CDP lo-
cation. However, this type of simulation is used widely in inversion
algorithms applied to reflection seismic data because of its simplici-
ty and low computational cost.

In particular, for a Monte Carlo method, where a large number of
repeated simulations are generated, the computational cost is a rele-
vant issue in selecting the forward simulation algorithm. However,
there is no limitation in the present formulation for considering a
more elaborate seismic simulation method, such as finite differences
or a reflectivity calculation in a 3D model. Finally, the data covari-
ance matrix in this formulation, Cg, in equation 7, characterizes the
combined data uncertainty that represents the addition of observa-
tion, simulation, and modeling error variances.

For the relation between total porosity and acoustic impedance,
we use amixed model described in equation 11. We model the acous-
tic impedance as a random field conditioned by the total porosity
field, with a central value that is a petrophysical transform of the po-
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rosity f(my,) plus multivariate Gaussian deviations. Here, we use a
relation directly derived from the Wyllie transform for the compres-
sional velocity (Wyllie et al., 1956) and corresponding to density as
the petrophysical transform of the porosity to acoustic impedance,

[1 _ ¢<1 _ pﬂui(-i )]
Z(d)) = Vmatrix Pmatrix ematrl‘x > (13)
\‘1 _ ¢(1 _ mamx)J

Viid

with Z being the layer acoustic impedance, ¢ the layer total porosity,
and Pruids Prmatrixs Vimatixo aNd Viiq the mass density and compressional
velocities for the pure rock matrix and pure fluid, respectively.

The total porosity, by definition, is a property bounded by zero and
one and, as such, cannot be Gaussian distributed. For all statistical
modeling, we use the logarithmic porosity, which is the logarithm of
the pore and matrix volume ratio, instead of the porosity as the model
property. The logarithmic porosity is defined conveniently in the
complete real axis and can be modeled with Gaussian densities. Fig-
ure 3 shows Gaussian probability densities defined in the domain of

1=
~
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Figure 3. Gaussian probability densities in the logarithmic porosity
domain and the corresponding densities in the porosity domain.

Table 2. Petrophysical parameters and statistics used in the synthetic test of

the method.

the logarithmic porosity and the corresponding densities in the do-
main of the porosity. The resulting model for the probability in the
porosity domain is similar to the lognormal near the zero bound, op-
posite lognormal close to the one bound and similar to the Gaussian
at the middle of the range.

The transformation of the porosity to the logarithmic porosity ¢~
is given by ¢* = In[¢/(1 — ¢)], whereas the inverse transforma-
tion is ¢ = exp[¢“]/(1 + exp[#*]). The impedance transform (re-
lation 13) in terms of the logarithmic porosity is

(] " exp[qﬁ*] Ptid )
* Pmatrix
Z(¢ ) = Vinawrix pmatrix( = ) . (14)

* v, iX
1 + exp[¢p'] 22
Viiuid

We calibrate the petrophysical transform to the reservoir data by
adjusting the payias Pmatrixs Vimauixs a0d Vigyig to optimal values that pro-
duce a best fit of the well-log data in the time window of interest. We
assume these parameters of the petrophysical transform are uniform
for this time window. This is an approximation because fluid and ma-
trix elastic properties are variable with the reservoir stratification.
The deviations from the relation, caused by local variations of fluids
and matrix properties, are characterized statistically to obtain the co-
variance matrix Cppyjeco in €quations 8 and 11, needed for the mixed
petrophysical model explained in the previous section. Thus, we ac-
count for porosity-variation effects in the deterministic component
of our impedance model (the Wyllie transform) and for facies and
fluid effects in the random component that characterizes deviations
from the transform.

Concerning the geostatistical model of the logarithmic porosity,
we calculate from the well-log data the mean logarithmic porosity in
the window of interest and characterize the deviations from the mean
to obtain the covariance matrix C,, used in equation 5.

SYNTHETIC TEST

We tested our sampling algorithms with a numerical model. In this
case, we did not use a specific data set to calibrate the porosity-im-
pedance relation or characterize the property sta-
tistics. Table 2 shows statistical and petrophysical
parameters that we used to build a joint porosity-
impedance realization taken as the true medium

Statistical parameter Value

for this example. The covariance functions de-
scribed are one dimensional, as are the porosity

Logarithmic porosity prior mean

Logarithmic porosity prior standard deviation 0.7
Logarithmic porosity covariance function

of 60 ms
Impedance standard deviation from transform 10°kgs~'m~?2

Impedance deviation covariance function

of 60 ms
Wyllie transform parameter V,ix 5600 m/s
Whyllie transform parameter Vi,q 1587 m/s
Wyllie transform parameter pqqix 2600 kg/m?
Wyllie transform parameter pgyq 1000 kg/m?

Seismic data misfit standard deviation

Seismic data misfit covariance function

—1.735 (corresponding to
0.15 porosity)

Spherical model with a range

Spherical model with a range

5% of seismic amplitude range

Time uncorrelated

and impedance models. The seismic trace com-
puted by convolving a source function with the
reflectivity series obtained from the true imped-
ance profile was taken as the observed data. We
ran the sampling algorithm described in the previ-
ous section, producing a large chain of joint po-
rosity-impedance realizations, starting from a
model configuration corresponding to a uniform
mean prior porosity and acoustic impedance.
Figure 4 shows a curve of data residuals versus
the iterations of the Monte Carlo method, plotted
for two different iteration ranges. Each iteration
involves testing a perturbation of the porosity or
impedance applied in a subset of layers taken ran-
domly and recalculating the seismic trace. The
vertical axis indicates the chi-squared statistic of
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the residuals. This is computed by the sum of squared differences be-
tween calculated and observed seismic amplitudes divided by the
data variance and the number of data samples. The horizontal axis
indicates the number of steps in the Markov chain, each one associat-
ed with an accepted or rejected perturbation of the porosity-imped-
ance model configuration.

The first phase of the chain, associated with the starting configura-
tion and large residuals, is called the burn-in phase. Once residuals
are reduced, the joint porosity-impedance model realizations satis-
factorily explain the seismic data within the data errors. This is
called the sampling phase. Realizations produced during the sam-
pling phase are considered samples from the combined probability
density. Figure 4 also shows a curve indicating the progress of the
joint data and model residuals, calculated by adding the correspond-
ing chi-squared statistics for the seismic data residuals, the imped-
ance deviations from the Wyllie transform of the porosity, the poros-
ity deviations from the prior porosity, and the source wavelet devia-
tion from the prior estimate.

The model configurations were modified during the sampling
phase, but they remain within the geophysical and petrophysical
likelihoods, as shown in Figures 5 and 6. Figure 5 shows eight real-
izations taken at regular intervals in the sampling phase of the chain,
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Figure 4. Progress with the iterations in the sampling algorithm of
the chi-squared seismic amplitude residual (black line) and the chi-
squared joint data and model residuals (gray line): (a) 50,000 itera-
tions; (b) 500,000 iterations.
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Figure 5. Eight joint porosity-impedance realizations taken at regu-
lar intervals from the sampling chain and their corresponding calcu-
lated seismic data (various color lines). Superimposed are the true
model configuration and the observed data (black lines). The gray
band shows one standard deviation of data uncertainty centered in
the observed data. Initial model configurations for porosity and im-
pedance are shown with a straight blue line.

all fitting the seismic observed data within data uncertainties. They
indicate the features and variability of the total porosity and the
acoustic impedance. Figure 6 shows the porosity and impedance
crossplot for the same realizations shown in Figure 5. The solid line
indicates the petrophysical transform (i.e., Wyllie relation), with pa-
rameters indicated in Table 2, and the gray area plus or minus one
standard deviation for deviates from the relation. This figure illus-
trates that joint porosity-impedance realizations also honor the
petrophysical information prescribed in the petrophysical likelihood
function.

‘We obtained 480,000 realizations from the sampling phase of the
chain. From this set of realizations, we computed the expected value
of the porosity and impedance and the marginal probabilities for the
porosity and impedance as a function of two-way reflection time.
These computations are straightforward averages of model realiza-
tions within the sampling phase, as described by equations 9 and 10.
Figure 7 shows the cumulative marginal probability distribution for
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Figure 6. Layer acoustic impedance and total porosity (color circles)
for the eight realizations shown in Figure 7, displayed with a hori-
zontal axis corresponding to (a) the logarithmic porosity and (b) the
porosity. The gray band shows one standard deviation of the loga-
rithmic porosity in the statistical model that links the two properties,
centered at the Wyllie petrophysical transform (black line).

Logarithmic Impedance
porosity Porosity (10° kg/s m2)
4321012

00 02 04 06 4 6 8 10 12

-1.81 -1.84 -1.8

2.1 2.1 &N 2.1

Time (s)

2.4 —2.41 —2.41

00 02 04 06 08 1.0
Cumulative probability

Figure 7. Total porosity and acoustic impedance estimated with the
inversion (black line), corresponding to the true model (red line)
used in the synthetic test. The color image shows the cumulative
probability density for porosity and impedance at each time obtained
as aresult of the inversion.
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the porosity and the impedance, the porosity and impedance estimat-
ed by the inversion, and the true porosity and impedance profiles.
The figure shows adequate prediction of the true values for the syn-
thetic test, with identification of major stratification depicted by low
and high porosity and corresponding high and low impedance. The
correlation between estimated and true properties was 0.91 for the
acoustic impedance and 0.87 for the total porosity.

For comparison with these results, we made the calculations using
the same Monte Carlo sampling techniques adapted to the corre-
sponding formulation in separate estimation steps: (1) inverting the
seismic data to estimate the acoustic impedance (with independence
from the porosity) and (2) transforming the estimated impedance to
porosity with the inverse Wyllie relation. Table 3 compares the joint
and separate inversions based on the correlation between the esti-
mated and true porosity and impedance and the rms estimation error.
The results of the joint inversion are correlated better with the true
porosity and impedance. In addition, the rms estimation error is
smaller for the joint inversion results than for those corresponding to
the separate inversion — approximately 8% smaller for the imped-
ance and 23% smaller for the porosity. From a mathematical point of
view, the joint inversion can be decoupled in two separate steps only
in the case of a linear petrophysical transform (Bosch, 2004). The re-
ferred work shows additional synthetic examples comparing joint
and separate inversions, solved with an optimization method.

APPLICATION TO SEISMIC AND WELL-LOG
RESERVOIR DATA

We applied our method to a data set from an eastern Venezuelan
oil reservoir. This reservoir is in a formation of clastic rocks charac-
terized by sequences of sand and shale. Fluids filling the pores are
brine and oil; no gas is present. First, we upscaled the acoustic im-
pedance and total porosity profiles derived from well-log data to the
corresponding seismic scale (Figure 8). Appropriate upscaling for
the total porosity is the arithmetic average of the small layers’ total
porosities. The impedance does not upscale in the same way; we
used a relation that results from the combination of the Backus aver-
age for the compressional velocity and the arithmetic average for the
mass density. Using a regression method, we adjusted Wyllie trans-
form parameters Puyig> Pmatrix> Vmawixs aNd Vg in the time window of
interest to fit the actual upscaled well data. Figure 9 shows the total
porosity and acoustic impedance crossplot derived from the well-log
data, superimposed on the Wyllie transform calibrated to fit the data.

Table 3. Prediction rms error and correlation factor between
predicted and true property values obtained with the joint
and two-step inversion approaches.

Joint Two-step
Description inversion inversion
Predicted true porosity correlation 0.87 0.82
Predicted true logarithmic porosity 0.84 0.78
correlation
Predicted true impedance correlation 0.91 0.89
Porosity prediction root mean square 0.043 0.053
error
Logarithmic porosity prediction rms error 0.33 0.43
Impedance prediction rms error (kg/m s2) 0.85X10° 0.92X10°

In the well-log data, we also characterized the deviations of the
acoustic impedance from the corresponding values predicted by the
Wyllie transform of the porosity by calculating the deviation covari-
ance for different time lags and modeling the covariance function.
Figure 10a shows the covariance function for the deviations of the
acoustic impedance from the petrophysical transform (i.e., the cali-
brated Wyllie transform) and the modeled covariance function. To
model the covariance function, we used a mixed model: the addition
of anugget term, a Gaussian term, and an exponential term, with pa-
rameters fitted to the covariance data. With this model, we defined
the covariance matrix Cyyjeeo in €quations 8 and 11. By characteriz-
ing the petrophysical transform deviation covariance and applying
corresponding deviations in the statistical petrophysical modeling,
we accounted for the impedance variability associated with factors
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Figure 8. (a) Total porosity and (b) acoustic impedance plots ob-
tained from the well-logged data (gray line) and the corresponding
profile upscaled to a 6-ms sampling after appropriate averaging of
thin layer values (black line).
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Figure 9. Crossplot of acoustic impedance and total porosity ob-
tained from the well-logged data after scaling to the model sampling
interval of 6 ms (black circles), the Wyllie transform with parame-
ters obtained by regression to fit the data (black line), and the one
standard deviation band that characterizes impedance deviations
from the predicted Wyllie transform value (gray band). Impedance
data are plotted against (a) the logarithmic porosity and (b) the po-
rosity.
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that affect the impedance in addition to the porosity, such as varia-
tions in fluids and lithology.

Similarly, we characterized the logarithmic porosity obtained
from the well-logged data by estimating the mean logarithmic po-
rosity and the covariance function. The covariance for different time
lags and the modeled covariance function are shown in Figure 10b.
We used the modeled covariance function to define the prior covari-
ance matrix for the porosity C,., and the mean logarithmic porosity
to define the prior expected porosity profile my, o in €quation 5. In
this case, we used a mixed model to fit the covariance data, adding a
nugget term, an exponential term, and a damped cosine term. The
latter was appropriate to model the oscillating component of the co-
variance that results from the stratified nature of the porosity profile,
driven by the shale-sand sequences.

We used the common least-squares method described by Olden-
burg et al. (1991) to estimate a source wavelet at the location of the
available well data. This method combines the impedances calculat-
ed from the well-log data with the measured seismic data at the well
location. The source wavelet is parameterized by the amplitude sam-
pled at regular time intervals, corresponding to the same sampling
interval of the seismic data. The resulting wavelet is taken as the cen-
ter of the prior probability density for the wavelet information
My, prier iN €quation 6. We allowed variability of the model source
wavelet to adapt to spatial changes, with a standard deviation from
the estimated wavelet of 20% of the total amplitude range of the
wavelet.

We applied the inversion method described to generate 1 million
joint porosity-impedance realizations, fully exploring the solution
space. To obtain a volume of the estimated properties, we applied
this procedure in a trace-by-trace manner to a seismic cube in the
area. Figure 11 shows the estimated total porosity and acoustic im-
pedance for a section of this seismic cube. The estimated values were
calculated by the average values of the realizations in the sampling
phase. The acoustic impedances and porosities derived from the well
data were superimposed at the well location for comparison with the
predicted porosity and impedance fields. In addition, we superim-
posed the observed seismic data all through the section for compari-
son with the estimated property fields.

In Figure 11, we can highlight the coherence between the stratifi-
cation in the estimated porosity and impedance fields and the corre-
sponding observed seismic refection events. Vertical resolution in
the estimated fields reaches, in some section locations, the maxi-
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Figure 10. Time covariance for (a) deviations of the well-logged im-
pedance from the Wyllie transform of the well-logged porosity and
(b) the total porosity. The covariance calculated from the well-
logged data is shown in black circles joined by gray line segments;
the corresponding covariance function model fitted to the data is
shown with a black line.

mum expected model resolution of 6 ms, approximately one-quarter
of the dominant period of the seismic signal, showing a thin stratum
that can be followed across the traces. In addition, the figure shows
adequate correlation between the strata of high and low porosities
and impedances, estimated by the seismic inversion and the corre-
sponding estimate at the well location from the wire logs. A normal
fault present in this reservoir, with a vertical displacement of approx-
imately 20 ms, is also shown in the figure, with a corresponding dis-
placement that can be identified in the property fields.

As explained, the model parameters included the source wavelet,
which is jointly estimated by the Monte Carlo inversion method.
Figure 12 shows the prior estimated source wavelet and ten realiza-
tions of the source wavelet taken at regular intervals from the sam-
pling chain at the location of the well. This realization shows a slight
correction from the prior estimated wavelet. Posterior probabilities
for the source wavelet amplitudes are shown in the same figure, as is
the posterior best estimate, which is calculated by the average of the
sampled wavelet realizations.

A summary of the information obtained from our Monte Carlo in-
version at the well is shown in Figure 13. The figure shows a cumula-
tive marginal probability plot for the porosity and impedance calcu-
lated from the total sampled realizations. The posterior expected val-
ues of the total porosity and acoustic impedance are superimposed
onto the probability plot. These are calculated by averaging the total
porosity and acoustic impedance realizations in the sampling phase
of the chain. The total porosity and acoustic impedance calculated
from the well-log data also are plotted. The basic stratification can be
identified by zones of low and high porosity, corresponding to zones
of high and low impedance, in both the probability plots and the esti-
mated time profiles. The same sequences are indicated by porosity
and impedance calculated from the well-log data. Well-log-derived
and seismic-derived values show a significant correlation of 0.7 for
the acoustic impedance and 0.69 for the total porosity.

Figure 13 shows the observed seismic data and a one standard de-
viation of the data uncertainty bar prescribed for the inversion,
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Figure 11. Sections of the (a) acoustic impedance and (b) total poros-
ity estimated with the inversion, superimposed onto the correspond-
ing well-logged property (thick blue line) and the observed seismic
data (thin black lines). The trace of a normal fault that intercepts the
section is shown (dashed gray line).
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which corresponds to the 15% of the observed seismic data ampli-
tude range. The calculated data from a realization taken at random
are also shown. All joint model realizations explain the seismic data
within data uncertainties and also honor the petrophysical transform
within the prescribed deviations.
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Figure 12. (a) Prior seismic source (thick dark blue line) and 10 seis-
mic source realizations pulled at regular intervals from the sampling
phase at the well location (various colored lines). (b) Cumulative
probability plot for the seismic source, the prior seismic source (blue
line), and the average of realizations in the sampling phase (black
line).
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Figure 13. (a) Porosity and (b) impedance cumulative probability
plots with the mean porosity and impedance profiles obtained as are-
sult of the inversion (black lines) and the porosity and impedance
profiles obtained from the well-logged data (red lines). (¢) One-stan-
dard-deviation data uncertainty band is centered at the observed
seismic data (red line), and seismic data are calculated from a model
realization taken at random (black line).

DISCUSSION

We describe a general methodology for the estimation of reservoir
parameters from seismic amplitudes, which we implement in a field
case assuming: (1) a one dimensional reservoir model per stacked
trace, (2) the simulation of the seismic data by convolving a source
wavelet with the reflectivity series calculated from the model, and
(3) a strong relation between the total porosity and the acoustic im-
pedance in the area. The latter is a condition that we confirm with our
well-log data. However, the general formulation we propose is not
restricted by these assumptions. More complete seismic simulation
techniques or petrophysical models could be used within a similar
framework.

Our choice of reservoir properties in the joint model exploits the
relation between the total porosity and the acoustic impedance,
which is described by the Wyllie transform. This relation is valid for
a wide range of rocks, including clastic environments as the one we
considered. In addition to the porosity, the Wyllie transform depends
on parameters that characterize the elastic behavior of the matrix and
the fluid filling the pores, which are variable within the reservoir. We
use uniform elastic parameters for the transform, optimized to the
best fit of the well data within the time window of interest. Thus, fac-
tors such as fluid and facies variations produce deviations from the
transform that are accounted in the random component of our petro-
physical model. The deviations and their time covariance are charac-
terized from the well-log data and included in the model. Our mixed
petrophysical model (deterministic mean plus random deviates)
does not assume an exact relation between the porosity and the im-
pedance, and statistically honors the dispersion from the Wyllie
transform.

Other reservoir properties related with the acoustic impedance
could be used in the joint reservoir description. Although it was out
of the scope of the present example, a more complete petrophysical
model could be considered, including facies and fluid parameters as
reservoir properties. It would depend on the specific case whether a
set of reservoir parameters may be resolved by the seismic and petro-
physical information. A natural extension of the method would be
the inversion of prestacked seismic data to estimate elastic parame-
ters and additional reservoir properties. Similarly, another promisso-
ry line of development consists of including well log conditioning to
the model, which could increase vertical resolution close to the wells
and warrant the model to honor the well data at well locations.

CONCLUSIONS

We integrate, under a unified petrophysical and geophysical in-
version scheme, different types of information and data that contrib-
ute to the estimation of reservoir and elastic parameters. Specifically,
we invert poststacked short offset seismic data to infer the total po-
rosity and the acoustic impedance fields, honoring petrophysical re-
lations calibrated to crossplots of well-log data. The joint formula-
tion helps to appropriately combine different uncertainties into the
final reservoir field estimate: seismic data uncertainty, data devia-
tions from the petrophysical transform, and seismic source uncer-
tainty. The joint inversion method fully accounts for nonlinear rela-
tions between the seismic data, elastic parameters, and reservoir pa-
rameters.

Our formulation is made in a probabilistic inference framework
and the solution consists in sampling realizations from the posterior
probability density, which results from the combination of geophysi-
cal, petrophysical, and prior reservoir information. Hence, the po-
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rosity-impedance realizations jointly honor the complete set of in-
formation. We compute from the realizations, expected values and
complete descriptions of the marginal probability for the reservoir
and elastic properties in the model. Although components of the pos-
terior probability are modeled with Gaussian functions, they are
evaluated at nonlinear functions of the model parameters and the re-
sulting posterior probability is not Gaussian. The sampling method
approach is general enough to account for non-Gaussian, complex,
eventually multimodal, posterior probability densities.

A synthetic test of the method showed very good correlation be-
tween predicted and true model values, both for porosity and imped-
ance. In this example, we illustrate that the joint inversion produces a
better prediction of the reservoir and elastic field than the step-wise
inversion. The application to a field case also showed good correla-
tion between the porosity and impedance values estimated with the
inversion and the corresponding values estimated from well-log
data. Although we used the well-log derived properties to calibrate
the petrophysical relationship between the porosity and the acoustic
impedance, the actual information of the well derived properties, as
a time profile, was not used to condition the estimation. Thus, the
well data derived acoustic impedance and total porosity time profiles
remain a valid reference for comparison of the inversion results. The
present method provides a full description of the result uncertainty,
as illustrated by the marginal probability plots for the porosity and
impedance. These model uncertainties account for the combination
of uncertainties corresponding to the geophysical and petrophysical
components of the inference problem.

ACKNOWLEDGMENTS

We acknowledge Petrobras Energia Venezuela, the Universidad
Central de Venezuela, and the CDCH-UCV (PG-08-00-5631-2004
and PI-08-00-5627-2004) for support in this research. We thank ref-
erees and GEOPHYSICS editors K. Wapenaar and M. D. Sacchi for
their reviews.

REFERENCES

Bachrach, R., 2006, Joint estimation of porosity and saturation using stochas-
tic rock-physics modeling: Geophysics, 71, no. 5, 053-063.

Bosch, M., 1999, Lithologic tomography: From plural geophysical data to li-
thology estimation: Journal of Geophysical Research, 104, 749-766.

, 2004, The optimization approach to lithological tomography: Com-

bining seismic data and petrophysical information for porosity prediction:
Geophysics, 69, 1272-1282.

Bosch, M., L. Cara, and A. Navarro, 2006, Joint estimation of reservoir and
elastic parameters from seismic amplitudes using a Monte Carlo method:
76th Annual International Meeting, SEG, Expanded Abstracts, 2027—
2031.

Bosch, M., and E. Fernandez, 2003, Porosity probability calculation from
lithological inversion of seismic amplitudes: Presented at the 2003 Sum-
mer Research Workshop, SEG.

Bosch, M., A. Guillen, and P. Ledru, 2001, Lithologic tomography: An appli-
cation to geophysical data from the Cadomian belt of northern Brittany,
France: Tectonophysics, 331, 197-227.

Bosch, M., and J. McGaughey, 2001, Joint inversion of gravity and magnetic
data under lithological constraints: The Leading Edge, 20, 877-881.

Contreras, A., C. Torres-Verdin, W. Chesters, and K. Kvien, 2005, Joint sto-
chastic inversion of petrophysical logs and 3D pre-stack seismic data to as-
sess the spatial continuity of fluid units away from wells: Application to a
Gulf-of-Mexico deepwater hydrocarbon reservoir: Transactions of the
46th Annual Logging Symposium, Society of Petrophysicists and Well
Log Analysts, 1-15.

Doyen, P. M., 1988, Porosity from seismic data: A geostatistical approach:
Geophysics, 53, 1263-1275.

Eidsvik, J., P. Avseth, H. Omre, T. Mukerji, and G. Mavko, 2004, Stochastic
reservoir characterization using prestack seismic data: Geophysics, 69,
978-993.

Geyer, C. J., 1992, Practical Markov chain Monte Carlo: Statistical Science,
7,473-551.

Gonzdlez, E. F., G. Mavko, and T. Mukerji, 2006, Rock physics and multiple-
point geostatistics for seismic inversion: 76th Annual International Meet-
ing, SEG, Expanded Abstracts, 2047-2051.

Hastings, W. K., 1970, Monte Carlo sampling method using Markov chains
and their applications: Biometrika, 57, 97-109.

Larsen, A. L., M. Ulvmoen, H. Omre, and A. Buland, 2006, Bayesian litholo-
gy/fluid prediction and simulation on the basis of a Markov-chain prior
model: Geophysics, 71, no. 5, R69-R78.

Loures, L. G. L., and F. S. Moraes, 2006, Porosity inference and classification
of siliciclastic rocks from multiple data sets: Geophysics, 71, no. 5, 065—
O76.

Mosegaard, K., and A. Tarantola, 1995, Monte Carlo sampling of solutions to
inverse problems: Journal of Geophysical Research, 100, 12431-12447.
Mukerji, T., A. Jgrstad, P. Avseth, G. Mavko, and J. R. Granli, 2001, Mapping
lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic

inversions and statistical rock physics: Geophysics, 66, 988—1001.

Oldenburg, D. W., S. Levy, and K. P. Whittall, 1991, Wavelet estimation and
deconvolution: Geophysics, 46, 1528—1542.

Smith, A. F,, and G. O. Roberts, 1993, Bayesian computations via the Gibbs
sampler and related Markov chain Monte Carlo methods: Journal of the
Royal Statistical Society, 55, 3-23.

Tarantola, A., 2005, Inverse problem theory and methods for model parame-
ter estimation: STAM.

Tierney, L., 1994, Markov-chains for exploring posterior distributions: An-
nals of Statistics, 22, 1702—-1762.

Torres-Verdin, C., M. Victoria, G. Merletti, and J. Pendrel, 1999, Trace-based
and geostatistical inversion of 3-D seismic data for thin-sand delineation:
An application in San Jorge basin, Argentina: The Leading Edge, 19,
1070-1077.

Wyllie, M. R.J., A.R. Gregory, and L. W. Gardner, 1956, Elastic wave veloc-
ities in heterogeneous and porous media: Geophysics, 21, 41-70.



