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Lithology discrimination from physical rock properties

Miguel Bosch∗, Maria Zamora‡, and Widya Utama‡

ABSTRACT

The estimation of lithology from multiple geophysi-
cal survey methods needs to be addressed to develop
advanced tomographic methods. An initial requirement
for lithology discrimination is that lithology should be
discriminable from the media properties physically re-
lated to the geophysical observations. To test this con-
dition for different combinations of the most common
crustal rocks, we performed several lithology discrimi-
nation exercises on rock samples under laboratory con-
ditions. The physical properties included mass density,
compressional velocity, shear velocity, electric conduc-
tivity, thermal conductivity, and magnetic susceptibility.
A categorical description of the sample lithology was
followed; hence, the inference consisted of predicting
the sample rock category (lithotype) membership. The

joint information provided by the physical properties of
the rocks allowed us to discriminate the sample litho-
type correctly, with an overall success rate of 100% in
the most favorable situation and over 85% in the least
favorable situation. We obtained successful classifica-
tion results for a variety of common lithotypes (gran-
ite, gabbro, limestone, tuff, marble, basalt, and gneiss)
using three common classification methods: clustering
analysis, Gaussian classification, and discriminant anal-
ysis. Although discrimination was positive with each of
these multivariate classification techniques, discriminant
analysis showed some advantages for the classification
and graphic analysis of the data. These results support
our postulate that lithology can be estimated reliably
if multiple geophysical observations are considered
jointly.

INTRODUCTION

Physical rock properties are macroscopic parameters caused
by the mineralogical composition, texture, and genesis of the
rocks being measured. The influence of lithology on the physi-
cal behavior of rocks is well recognized, and a large amount of
work has been devoted to its study. However, the inverse prob-
lem of estimating rock lithology from (several) rock physical
properties has been less frequently addressed, despite its prac-
tical importance. One may postulate that, if we have sufficient
information about the macroscopic physical behavior of the
rock, we should be able to infer the lithology. Moreover, this
task would be simplified if we had prior knowledge of the pos-
sible types of rocks in a particular region. Hence, the problem
involves discriminating among the various rock types.

A background to this study is the work developed in the
domain of well-log interpretation, where lithologic discrimi-
nation and classification methods have been extensively de-
veloped. Several multivariate statistical methods are routinely
applied when analyzing well-log data. Most common among
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these approaches are clustering analysis (Serra and Abbott,
1980) and Gaussian classification (Delfiner et al., 1984). Less
frequently, discriminant analysis has been applied to well-log
data (Sakurai and Melvin, 1988; Eberle, 1992). The logs used as
parameters to estimate the lithology are, among others, density,
neutron, sonic, resistivity, gamma ray, self-potential, photoelec-
tric cross-section, and element (thorium, potassium, uranium)
concentrations. These logs provide very detailed information
about the logged media. In this work, we will study the possi-
bility of discriminating lithology from a different kind of pa-
rameter: rock physical properties that can be estimated away
from the well from geophysical tomographic methods, such as
mass density, magnetic susceptibility, compressional velocity,
shear velocity, and electrical conductivity.

The work is motivated by the search for advanced tomo-
graphic methods to infer the lithologic structure of earth
media from observations provided by multiple geophysical
techniques (Bosch, 1999). Conventionally, tomography con-
sists of inverting a particular geophysical data set to estimate
the physically related property. For example, we can obtain
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compressional velocity from seismic arrival times (Bosch,
1997), conductivity from electromagnetic data (Newman and
Alumbaugh, 1997), mass density from gravity data (Camacho
et al., 1997), and magnetic susceptibility from magnetic data
(Li and Oldenburg, 1996). But none of these estimated images
is sufficient for lithology interpretation. From the scale of the
globe to the scale of the reservoir or the ore body, interpre-
tation is based on multidisciplinary evidence. Interpretation
teams must match different images provided by independent
geophysical techniques into a lithologic representation, consis-
tent with the petrophysics and the geology of the region. In this
interpretation process, either qualitative or quantitative, the
problem of inferring lithology from multiple estimated physi-
cal rock parameters is obviously posed.

We focus on a required condition for lithology inference.
Suppose we have precise knowledge of several physical prop-
erties of a rock sample and prior knowledge that the sample
belongs to one of various lithologic groups. Can we success-
fully predict the group of the sample? To address this prob-
lem experimentally, we applied three conventional classifica-
tion methods to a data set characterizing various common types
of rocks. The data set contained laboratory measurements of
several physical rock properties. This study is needed for fur-
ther estimation of the lithology from multiple geophysical data
and is required to support the development of the appropriate
inversion methodologies.

Theory and methodology for lithologic tomography from
multiple geophysical data sets has been considered in the work
by Bosch (1999), and a field case has been presented by Bosch
(1998) and by Bosch et al. (2001). Also, several inversion meth-
ods have been described for estimating the lithology from
seismic data alone (e.g., Lortzer and Berkhout, 1992; Fichtl
et al., 1997; Torres-Verdin et al., 1999). In both cases, the statis-
tical description of the rock physical properties is incorporated
into the inversion process. For lithology estimation purposes,
the collection and analysis of petrophysical data is relevant
and should be an integral component of geophysical explo-
ration planning and geophysical inversion. With this in mind,
the classification techniques used in the present work have the
added value of being useful tools for (1) the multivariate sta-
tistical description of the dependence between the rock prop-
erties and the lithologic groups and for (2) the choice of the set
of properties and geophysical data appropriate for lithology
discrimination in a particular exploration scenario.

The following sections present a brief description of the three
classification methods considered, as well as a description of the
petrophysical data. They are followed by the presentation of
the results, a discussion of these results, and our conclusions.

DATA AND METHODS

Three common methods for lithology classification of well
logs were applied to our data sets: clustering analysis, Gaussian
classification, and discriminant analysis. They all are based on
multivariate statistics, and they all aim to define or identify
groups of samples from some set of observations. The obser-
vations we used are the property values measured in the labo-
ratory for each rock sample, after suitable transformation and
standardization. Considering Np properties in the database,
we represent the property observations by a vector in an
Np-dimensional space, z = {z1, z2, . . . , zNp }. The components

are the transformed standardized values of each property. This
Np-dimensional space is called the property space.

For each data set, the samples in our problem belong to
various rock types (lithotypes) that we describe by a categorical
variable Gi , with i = 1, 2, . . . , Ng . Here, the lithologic space is
the discrete space of the Ng possible values of the lithotype.

Rock samples and properties

Two different data sets were considered for the discrimina-
tion tests. Our first data set, A, was integrated with samples
representing four lithotypes: gabbro, limestone, marble, and
sedimentary tuff. For this set of samples, we had laboratory
measurements of five physical properties: mass density, ther-
mal conductivity, compressional velocity, shear velocity, and
electrical conductivity. To be as close as possible to real con-
ditions, the rock samples were saturated with water. For the
electrical conductivity measurements, the water conductivity
was 5.27 S/m. This value is centered within the estimated range
of electrical conductivity for crustal fluids (Nesbitt, 1993).

Lithotypes in data set A belong to the three major rock
families—igneous, metamorphic, and sedimentary—and they
are very different types of rocks, which represents a favorable
case for discrimination. To test the discrimination ability of the
techniques in a less favorable situation, a second data set, B,
included more closely related types of rocks. It was integrated
by samples representing four lithotypes: granite, gneiss, gab-
bro, and basalt. In addition to the five properties considered
for data set A, we also had measurements of the magnetic sus-
ceptibility for data set B.

The rock samples came from various regions. The igneous
and metamorphic rocks were taken from several drillholes in
the Superior Province, Greenville Province, and Appalachian
Mountains in North America (Mareschal et al., 1989; Pinet
et al., 1991; Guillou et al., 1994; Guillou et al., 1995). The vol-
canic rocks (tuffs) originated from Champs Phelegreens in Italy
(Zamora et al., 1994b; Yven, 1996). The sedimentary rocks
came from different French quarries (Zamora et al., 1994a;
Cattin, 1993). Within the same lithotype, the samples come
from different sites or well depths, so they reasonably repre-
sent variations of composition and texture.

For the results shown in this work, the logarithm of the prop-
erty value is used as the variable characterizing the sample. This
transformation proved to be convenient to better represent
(normalize) the property variability in our data sets. Addition-
ally, there are theoretical arguments for the use of the logarith-
mic transformation. These properties are defined over the real
positive semiaxis; hence, they are not normally distributed. Af-
ter the logarithmic transformation, the data were standardized
to have the same variance for each of the properties. These op-
erations are generalized throughout the work. For simplicity
we call properties the transformed and standardized values of
the laboratory measurements.

Clustering analysis

Given a set of samples, clustering analysis is a method for
constructing groups based on the proximity of the samples in
the property space. The construction of these groups is based
only on the properties and does not take into account infor-
mation about sample membership to a particular lithologic
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group. This differs from the other two methods, which use a
training population to construct the statistical model for the
classification.

Starting with a notion of distance in the property space (com-
monly Euclidean), there are several ways to form clusters of
cases. Here we used hierarchical agglomeration, a common ap-
proach in which clusters are formed by grouping samples into
bigger and bigger clusters until all cases are members of a single
cluster. For the starting point, all cases are considered separate
clusters. To decide which clusters should be combined at each
step, various criteria of cluster proximity can be used. These in-
clude the average distance between samples within the result-
ing cluster (average linkage within groups), the smallest dis-
tance between samples across the clusters (nearest neighbor),
and the distance between the centroids (centroid method). The
two most proximate clusters, among all possible combinations,
are linked.

The result of the clustering analysis can be visualized by rep-
resenting the linkages and the combination distance with a
display called a dendogram. A review of clustering techniques
can be found in the work of Gnanadesikan et al. (1989). Dif-
ferent applications to well-log data can be found in the work
of Serra and Abbot (1980) and Gill et al. (1993).

Gaussian classification

Whereas clustering analysis constructs groups of similar
data, other classification methods predict the membership of a
sample from a well-known set of possible groups.

The Gaussian classification method is based on constructing
a statistical model that relates property space with lithologic
space. Within each lithologic group, the property vector z is as-
sumed to have an n-variate Gaussian distribution with condi-
tional probability density function (PDF), denoted as f (z | Gi ).
The centroid and covariance matrix of the Gaussian density are
inferred from a training population of samples that should be
available for each lithotype.

To predict the group membership of a sample, the condi-
tional P(Gi | z) is needed. It is calculated using the inference
rule,

P(Gi | z) = f (z | Gi )P(Gi )∑
j P(z | G j )P(G j )

, (1)

Where P(Gi ) denotes the prior probabilities for each group.
With the Gaussian model for the conditional PDF and using
equal prior probabilities for each group,

P(Gi | z) ∝ exp
[
−1

2
(z − z̄i )t C−1

i (z − z̄i )
]
, (2)

with z̄i and C−1
i being the centroid and the covariance matrix

inferred for the ith lithotype. The predicted lithotype is taken
to be the one that maximizes P(Gi | z).

Application of this method to classifying lithotypes from
well-log data can be found in the work of Delfiner et al. (1984)
and King (1990).

To test the performance of the classification, the member-
ship of the samples in the training data set is predicted and
compared with the true membership. When the same data set
is used for training (calculating centroids and covariance ma-
trix) and for testing (predicting) the classification, the proce-
dure yields to the commonly called apparent error rate. To test

the actual performance of the classification over new samples,
we use the jackknife sorting method. It consists of (1) omitting
a test sample from the training data set used to calculate the
statistical classification model, (2) classifying the test sample,
and (3) repeating the procedure for all samples. The method
provides a good estimate of the error rate (Gnanadesikan et al.,
1989). Obviously, as the size of the population increases, both
error estimates get closer.

Discriminant analysis

Discriminant analysis looks for functions of the properties
that optimally (in a least-squares sense) separate the groups.
These discriminant functions are linear functions of the prop-
erties and are calculated from a training data set of samples
with known membership.

To introduce the discriminant analysis problem, consider a
linear function of the data zpn,

d(zn) =
Np∑
p=1

αpz pn, (3)

where αp are the coefficients defining the linear function and
the indices p and n identify the property and the case, respec-
tively. The purpose of the method is to select a combination
of linear coefficients that maximize the dispersion of group
centroids yet minimize the dispersion of cases within groups.
More precisely, discriminant analysis looks for linear functions
that maximize the ratio between the former and the latter
dispersions.

Figure 1 illustrates the problem with two discriminating vari-
ables, z1 and z2, and two lithotype groups. It is clear in this

FIG. 1. Distribution of samples from two lithotype groups in a
space of two physical properties z1 and z2. The marginal prob-
ability densities for each group are represented near to the
axes, showing significant overlap between the groups for both
z1 and z2. The group separation is improved for the discrimi-
nant function z1 − z2. Among all possible linear combinations
of the original variables, this particular combination optimizes
the group separation.
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simple case that the function d = z1 − z2 optimizes the group
separation. When more than two groups and more than two
variables are involved, as in the present work, more than one
discriminant function is obtained by solving the optimization
problem. These functions are linearly independent.

The discriminant function coefficients are the eigenvectors
of a matrix depending on the data covariances. Namely, they
are the eigenvectors of W−1B, with W being the within-groups
covariance matrix and B being the between-groups covariance
matrix. The discriminant functions are ranked according to
the magnitude of the associated eigenvalue, which is related
to the discriminating ability of the function. The number of
discriminant functions depends on the number of groups Ng

and the number of properties Np ; there are no more than
N f = min(Ng − 1, Np) discriminant functions. For a review on
the mathematics of discriminant analysis, see, for instance, the
work of Gnanadesikan et al. (1989). Applications of discrimi-
nant analysis to well-log data interpretation can be found in the
work of Sakurai and Melvin (1988), Eberle (1992), and Wong
et al. (1995).

The discriminant functions are used as an auxiliary coordi-
nate system to represent data—the discriminant space. Com-
mon applications of discriminant analysis are graphic represen-
tation of multivariate data and classification. Classification of
samples is performed in the discriminant space, following the
same procedure as already explained for Gaussian classifica-
tion. The only difference between the two methods consists of
whether the classification procedure is performed in the prop-
erty space or in the discriminant space. Discriminant analysis
facilitates the visual representation of multivariate data. Com-
monly, the two or three first discriminant functions are used for
graphical description and data analysis. This is useful because,
in the property space, visual analysis involves the examination
of a large number of crossplots.

RESULTS FOR DATA SET A

Figure 2 shows the property crossplot matrix for data set
A. Several properties are significantly correlated in this data
set: compressional velocity, shear velocity, and mass density.
The information provided by these three correlated proper-
ties seems useful to distinguish between sedimentary lithotypes
(limestone and tuff) and more competent rocks (gabbro and
marble). Additional information is provided by the thermal
conductivity, which seems to be useful for separating marbles
from gabbros and, with less emphasis, tuffs from limestones.
The electric conductivity is anticorrelated with the rest of the
properties, and the plots show an intermediate behavior be-
tween the two types of information already mentioned.

Clustering analysis was performed with this data set using a
Euclidean distance in the property space and the average dis-
tance between groups as the agglomeration criterion. A dendo-
gram of the links within groups and their hierarchy is shown in
Figure 3. This figure depicts a pure branch of gabbros, a marble
branch with one gabbro impurity, a predominantly limestone
branch with two tuffs, and a mixed branch with five tuffs linked
with a smaller branch of four limestones. This mixed cluster can
be identified at the bottom of some of the crossplots of Figure 2
(for the density, compressional, and shear velocities).

As said before, the clustering procedure does not use infor-
mation about sample membership. In Gaussian classification

and discriminant analysis, this information is used to construct,
from the training population, a statistical model for classifi-
cation. Table 1 shows the classification matrix obtained after
applying the Gaussian classification procedure to data set A.
The classification has been tested over all samples of the train-
ing population. An accuracy of 95% is obtained in the classi-
fication. The classification matrix using the jackknife sorting
method is shown in Table 2, presenting an 87% overall suc-
cess rate. The jackknife success rate is higher for the gabbro
and limestone groups, which have the largest number of sam-
ples. When the number of samples is large, the jackknife rates
approach the apparent rates obtained by using the training
samples, as in Table 1. For the lithotypes with a small number
of samples (marble and tuff), the covariance estimation is very
sensitive to eliminating a single sample from the training data
set, producing an artificially pessimistic jackknife error rate.

Discriminant analysis was performed on data set A, pro-
ducing three discriminant functions. Table 3 shows the coeffi-
cients of the discriminant functions as well as the correlations
between the properties and the discriminant function values.
The hierarchy of the functions corresponds to their significance
in the discrimination. Functions 1, 2, and 3 represented 81%,
17%, and 2% of the between-group variance, respectively. The
crossplot of the samples for the two first discriminant functions
is shown in Figure 4. Good separation of the four lithotypes can
be seen in the discriminant space.

The prediction of the sample membership based on the three
discriminant functions is shown in Table 4. A high success rate
of 97% is obtained. To test the actual classification over samples
outside the training population, the jackknife sorting method
was performed. This implies recalculating the discriminant
functions and the statistical model to test each sample omitted

FIG. 2. Property crossplot matrix for data set A. The prop-
erties in the data set are logarithm of the density (Logden),
logarithm of the electric conductivity (Logelec), logarithm of
the thermal conductivity (Logther), logarithm of the compres-
sional velocity (Logvp), and logarithm of the shear velocity
(Logvs). The lithotypes represented in the data set A are lime-
stone (11 samples), gabbro (14 samples), marble (7 samples),
and tuff (7 samples). Each cell shows the plot for the two prop-
erties annotated at the diagonal. Plots that are symmetric by the
diagonal present the same information with permutated axes.
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from the training population. The classification matrix for the
jackknife method is shown in Table 5; the method produced an
87% success rate. These classification results were very similar
to those obtained with the Gaussian classification method.

RESULTS FOR DATA SET B

The property crossplot matrix for data set B is shown in
Figure 5. Gabbro samples represented in data set B are the
same as in data set A. For Figure 5, gabbro samples seem to be
more dispersed. This is an effect of zooming in the property

Table 1. Results of the Gaussian classification for data set A.

Predicted group membership

Actual group Tuff Limestone Marble Gabbro

Tuff 7
Limestone 1 10
Marble 7
Gabbro 1 13

FIG. 3. Clustering dendogram for data set A. Cases are labeled
by the true lithotype of the sample and a sample number. Solid
lines indicate the links between the cases created by the ag-
glomeration procedure. The horizontal scale represents the
distance in the property space between the combined groups.
At the beginning of the procedure the cases belong, one by
one, to single-element groups. The group agglomeration pro-
gresses from left (linking the closer groups) to right (linking the
more separate groups). Gray levels in lines highlight branches
showing a predominant lithotype.

space. Data set B is concentrated over a smaller region of the
property space, and samples across lithotypes are closer than
in data set A. Overall correlation between the compressional
velocity, the shear velocity, and the density is also seen, but it
is not as strong as for data set A. Each property seems to pro-
vide some independent information. Gabbro samples are in
the upper range of the compressional velocity, shear velocity,
mass density, and magnetic susceptibility. Gneiss samples are
in the lower range of the compressional velocity, shear veloc-
ity, thermal conductivity, and mass density. These two groups
are the most distant. Granite samples show lower density and
lower magnetic susceptibility than basalt samples. In several
crossplots granite samples are in between gneiss and basalt,
and basalt samples are in between granites and gabbros.

Results of the clustering analysis are shown in Figure 6.
The procedure was performed using a Euclidean distance and
the average distance within groups criterion, as in Figure 3.

Table 2. Results of the Gaussian classification for data set A
with jackknife sorting.

Predicted group membership

Actual group Tuff Limestone Marble Gabbro

Tuff 6 1
Limestone 1 10
Marble 5 2
Gabbro 1 13

Table 3. Discriminant functions for data set A, and function
correlation with the discriminating variables.

Coefficients CorrelationProperty
name Func 1 Func 2 Func 3 Func 1 Func 2 Func 3

Logther 0.68 0.75 0.13 0.85 0.46 0.17
Logelec −0.53 0.61 0.56 −0.70 0.55 0.04
Logvs −0.64 0.80 3.08 0.60 −0.24 0.55
Logvp 0.46 0.01 −2.67 0.67 −0.19 0.34
Logden 0.19 −1.15 0.34 0.60 −0.44 0.51

FIG. 4. Plot of cases in data set A in the space formed by the first
and the second discriminant functions. The cases are labeled
by the true lithotype.
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Branches of the dendogram were integrated mostly by samples
of the same lithotype. Only one basalt case and one gneiss case
were linked outside its lithotype group. The agglomeration dis-
tance between granite and basalt branches is shorter than the
distance between the gneiss group and the gabbro group.

The predicted lithotypes produced by the Gaussian classi-
fication procedure are shown in Table 6 for samples in the
training population. The overall classification success is 100%;
no errors in the classification were present. The jackknife clas-
sification results are shown in Table 7 with an overall success
rate of 85%. Most groups in this data set were represented by

Table 4. Results of the discriminant analysis classification for
data set A.

Predicted group membership

Actual group Tuff Limestone Marble Gabbro

Tuff 7
Limestone 11
Marble 7
Gabbro 1 13

Table 5. Results for the discriminant analysis classification of
data set A with jackknife sorting.

Predicted group membership

Actual group Tuff Limestone Marble Gabbro

Tuff 6 1
Limestone 11
marble 5 2
Gabbro 1 1 12

FIG. 5. Property crossplot matrix for data set B. The prop-
erties in the data set are logarithm of the density (Logden),
logarithm of the electric conductivity (Logelec), logarithm of
the magnetic susceptibility (Logmag), logarithm of the ther-
mal conductivity (Logther), logarithm of the compressional
velocity (Logvp), and logarithm of the shear velocity (Logvs).
The lithotypes represented in the data set A are gabbro (14
samples), granite (5 samples), gneiss (4 samples), and basalt
(4 samples). Each cell shows the plot for the two properties
annotated at the diagonal. Plots that are symmetric by the
diagonal present the same information with permutated axes.

a small number of samples; consequently, the jackknife success
rate is quite conservative. Nevertheless, 85% is still a good rate
when compared with the 25% rate that would be expected with
a blind classification of the cases in the four groups.

The discriminant analysis performed with data set B pro-
vided three discriminant functions (see Table 8). The first func-
tion was the strongest correlated with the mass density, the
shear velocity, and the compressional velocity; the second was
the strongest correlated with the thermal conductivity; and the
third was the strongest correlated with the magnetic suscep-
tibility and the electric conductivity. The first function repre-
sented 78% of the between-group variance, the second rep-
resented the other 19%, and the third represented 2%. The
crossplot of samples for the first two discriminant functions is
shown in Figure 7. Note a large separation between the gneiss
and gabbro. The closest samples across groups belong to basalt
and granite. The granite lithotype is between the basalt and
gneiss lithotypes. The basalt lithotype is closer to gabbro and
granite lithotypes than to the gneiss lithotype. These relations
are consistent with the description provided by the crossplots
and the clustering analysis.

The classification of samples based on the three discrimi-
nant functions provided by the analysis is shown in Table 9.

FIG. 6. Clustering dendogram for data set B. Cases are labeled
by the true lithotype of the sample and a sample number. Solid
lines indicate the links between the cases created by the ag-
glomeration procedure. The horizontal scale represents the
distance in the property space between the combined groups.
At the beginning of the procedure, the cases belong, one by
one, to single-element groups. The group agglomeration pro-
gresses from left (linking the closer groups) to right (linking the
more separate groups). Gray levels in lines highlight branches
showing a predominant lithotype.
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The success rate is 100%. To test lithotype prediction on sam-
ples outside the training population, the jackknife method was
applied. The classification matrix for the jackknife method is
shown in Table 10. Only one basalt, one gneiss, and one gab-
bro were misclassified—the same samples already misplaced in
the clustering analysis. The overall jackknife success rate was
88% for data set B—a good result. Moreover, the jackknife

Table 6. Results of the Gaussian classification for data set B.

Predicted group membership

Actual group Gabbro Basalt Granite Gneiss

Gabbro 14
Basalt 4
Granite 5
Gneiss 4

Table 7. Results of the Gaussian classification for data set B
with jackknife sorting.

Predicted group membership

Actual group Gabbro Basalt Granite Gneiss

Gabbro 14
Basalt 2 1 1
Granite 1 4
Gneiss 4

Table 8. Discriminant functions for data set B and function
correlation with the discriminating variables.

Coefficients CorrelationProperty
name Func 1 Func 2 Func 3 Func 1 Func 2 Func 3

Logden 0.87 0.38 0.14 0.67 0.49 0.18
Logvs −0.07 −1.02 0.82 0.49 −0.24 0.02
Logvp 0.51 0.67 −1.07 0.42 0.26 −0.27
Logther 0.89 −0.39 −0.01 0.22 −0.58 0.16
Logmag −0.08 0.33 0.76 0.15 0.50 0.55
Logelec −0.39 0.05 0.96 −0.17 0.02 0.26

FIG. 7. Plot of samples in data set B in the space formed by the
first and second discriminant functions. The cases are labeled
by the true lithotype.

rate is a conservative estimate because various rock groups are
represented by few cases.

DISCUSSION

We have used three different multivariate classification tech-
niques to show that the sample lithotypes, represented in data
sets A and B, could be successfully discriminated from the
physical properties considered in this work. Data set A was dis-
persed over a large region of the property space, and data set B
was dispersed over a smaller one (more similar lithotypes). In
both cases the sample lithology was discriminated successfully.
The lithotypes considered were common types of rocks. The re-
sults presented here support the idea that samples significantly
different in a lithologic sense are also significantly different in
the sense of the physical properties considered here.

Because of the correlations between properties, the property
relevance in the multivariate discrimination is relative to the
other properties included in a data set. For the same reason, it
is unreliable to interpret the discriminant function coefficients
as a quantitative measure of a property’s importance in the
discrimination. Selecting convenient property combinations is
a better posed problem than evaluating the relevance of indi-
vidual properties. Hence, the different property subsets could
be ranked easily by their success rate in the classification.

As an example with data set A, the two less correlated
variables—electrical and thermal conductivity—were used as a
smaller data set for the discriminant analysis. The variables also
have important correlations with the first and second discrim-
inant functions. These two properties were taken as a smaller
set of variables for performing the discriminant analysis, and
they provided a 92% success rate in the posterior classification
of samples—acceptable if compared with the 97% success rate
obtained with all the properties. Data set B also used a smaller
set of properties that contained enough information about the
sample’s lithology. Discriminant analysis based on mass den-
sity, shear velocity, and thermal conductivity data produced
a 100% success rate. The same result was obtained with the
full-variable data set.

An additional application of the type of analysis presented
here would be to identify the most convenient property

Table 9. Results of the discriminant analysis classification for
data set B.

Predicted group membership

Actual group Gabbro Basalt Granite Gneiss

Gabro 14
Basalt 4
Granite 5
Gneiss 4

Table 10. Results for the discriminant analysis classification
of data set B with jackknife sorting.

Predicted group membership

Actual group Gabbro Basalt Granite Gneiss

Gabbro 13 1
Basalt 1 3
Granite 5
Gneiss 1 3



580 Bosch et al.

combinations for lithology discrimination, according to a par-
ticular set of lithotypes and samples from a study region. Iden-
tifying these properties would in turn imply the definition of
the appropriate geophysical surveys for their estimation.

The properties in our data sets corresponded to water-
saturated samples to better reproduce common in-situ condi-
tions. For the electric conductivity measurement, the conduc-
tivity of the water was 5.27 S/m. This value is approximately in
the middle of the range of estimated conductivity for common
crustal fluids (Nesbitt, 1993). For practical reasons, our labo-
ratory measurements did not reproduce all in-situ rock con-
ditions: temperature, pressure, type of fluid, saturation, fluid
conductivity. Nevertheless, we think that variations of these
conditions introduce systematic changes in physical rock prop-
erties. This can be seen, for instance, in the work of Christensen
and Mooney (1995) studying the variation on density, compres-
sional velocity, and shear velocity with pressure and tempera-
ture for a variety of common crustal rocks. Our analysis showed
that the variability of rock physical properties is often smaller
within our lithotypes than across our lithotypes. If the variation
in physical properties with rock conditions is mostly systematic,
the statistical characteristics of the inference problem should
not change drastically.

Models describing the lithologic structure for a region are
likely to represent a larger scale of spatial resolution than the
centimeter scale considered in our rock samples. As well, prop-
erties estimated from geophysical surveys represent averages
over larger volumes of rock. For seismic surveys this spatial
range is related with wavelength, which is typically around
50 m or more. Another interesting problem consists of extrap-
olating these discrimination results if larger rock volumes are
considered.

The effect of changing the volume support for the property
measurements has been studied in geostatistical work (e.g.,
Isaaks and Srivastava, 1989). Physical properties such as mass
density or compressional velocity are additive. Increasing the
volume of the rock block results in averaging the property in-
side a larger volume. Hence, the block property distributions
have smaller variances than the property distributions of rock
samples, whereas the mean values are the same. This effect,
of course, favors the discrimination of lithologies because the
physical properties characterizing the lithotype tend to be less
scattered. Other properties, such as electrical conductivity, are
not additive and follow more complicated regularizations. Nev-
ertheless, in both cases, physical properties for larger block
volumes of the same lithotype always result in less-variable
property values than for small laboratory samples. Hence, the
change for larger-scale estimation of the properties helps dis-
criminate lithotypes.

Among the different classification techniques used, discrim-
inant analysis can combine the influence of the properties to
get an optimum discrimination. This operation cannot be ob-
tained by a straightforward Gaussian classification from the
property space. Discriminant analysis also provides a conve-
nient framework for graphical analysis of the data by provid-
ing a discriminant space of fewer dimensions than the property
space (usually no more than two or three discriminant functions
are significant).

In this study, we represent lithology by categorical variables:
lithologic groups of rocks. Lithology and rock structure in some
cases can be described by continuous variables, such as silica

weight content or porosity. These cases are not considered in
this work, but they are equally relevant. We believe lithologic
continuous parameters can be inferred, as we have shown for
lithotypes, from multiple physical rock properties. Different
approaches to regression would provide, in this situation, the
appropriate statistical methods for the inference, instead of
the classification methods used here for categorical variables.
Work in this line has been done in the domain of well-log inter-
pretation (Mendelson and Toksöz, 1985; Sakurai and Melvin,
1988; Zimmermann et al., 1992).

We have considered physical measurements made on the
rock samples under laboratory conditions. The more general
problem of inferring the spatial lithologic structure of a re-
gion from geophysical survey data (Lortzer and Berkhout,
1992; Bosch, 1998) is of major interest in geophysical explo-
ration. Geophysical techniques provide information about the
physical properties inside a volume, but these estimates are
affected by larger uncertainties than the laboratory measure-
ments considered in our work. Nevertheless, our work repre-
sents a preliminary step toward the development of lithologic
tomographic techniques. The possibility of estimating lithology
from physical properties is required for estimating lithology
from the geophysical data associated with these properties
(e.g., gravity data for mass density, magnetic data for mag-
netic susceptibility, etc.). Roughly speaking, one could say that
the uncertainties of estimating lithology from geophysical data
would combine uncertainties from two levels: (1) uncertain-
ties of estimating lithology from physical properties and (2)
uncertainties of estimating the physical properties from the
geophysical data.

Several methods have already been applied for discrimina-
tion of subsurface lithostratigraphy, combining attributes from
seismic reflection sections and well-log data in the domain of
oil reservoir description (Angeleri and Carpi, 1982; Sinvhal
and Khattri, 1983; Doyen, 1988; Dumay and Fournier, 1988;
Fournier and Derain, 1995). In these works, statistical rela-
tions are built between seismic traces attributes and reservoir
lithofacies from a calibration population consisting of wells
and their adjacent traces. The information is used to condition
the interpolation of lithofacies between wells. Work by Fichtl
et al. (1997) shows an interesting direction in this domain by
establishing statistical relations between the lithofacies and the
physical media properties inferred from the seismic data.

CONCLUSION

Several physical properties measured in rock samples were
used to discriminate the sample lithology following three dif-
ferent multivariate classification methods: clustering analy-
sis, Gaussian classification, and discriminant analysis. Several
common lithotypes were considered. The physical properties
used were mass density, compressional velocity, shear veloc-
ity, electrical conductivity, thermal conductivity, and magnetic
susceptibility.

The results of the lithologic discrimination, based on the sam-
ple’s physical properties, were positive for all three techniques
considered. The techniques proved useful for analyzing mul-
tivariate data and presented consistent results among them.
These results let us emphasize that the lithology can be esti-
mated reliably if one has enough information about the physi-
cal behavior of the rocks. In particular, physical rock properties
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that can be estimated away from the well by geophysical tomog-
raphy are useful for lithology estimation if they are considered
jointly.

The influence of each property in the discrimination depends
on the particular rock types under consideration. In a particular
area under exploration, a smaller set of relevant properties
could be identified and used for the classification. In turn, this
helps define the geophysical data to acquire in the area.

A few methodological advantages of discriminant analysis,
compared with the other techniques, have been considered in
this work. This may encourage its more extensive use in other
domains, such as well-log interpretation.
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