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Lithologic tomography: From plural geophysical data to
lithology estimation

Miguel Bosch, *
nstitute de Physique du Globe de Paris, France

Abstraet. The information provided by different geophysical data sets (gravimetric, mag-
netic, seismic, etc.) can be used, together with petrophysical and geostatistical information,
to estimate the major lithological properties of the rocks within the studied volume. The
formalization of this inverse problem requires a joint representation and parameterization
of the different. media properties in the model. The information relating rock properties
together couples the inversion of the plural geophysical data sets and allows one {o relate
the observations with the lithological parameters of the model. The representation by prob-
ability density functions (pdfs) of the different types of information entering the problem
is also required and provides the mathematical framework to formulate their combination.
The resulting joint posterior pdf is composed of two factors: the joint likelihood function,
which is the product of independent likelihood functions associated with each geophysical
data set, and the joint prior pdf. The latter decomposes, following a partition of the model
parameter space in a primary (lithological) subspace and secondary (physical) snbspace,
as a marginal pdf over the primary model parameter space and a conditional pdf over the
secondary model parameter space. A Markov-chain Monte Carlo method was adapted to
sample joint models from the posterior pdf: (1) the method starts with a Markov-chain
sampling primary models from the marginal prior pdf, (2) the chain is extended to the joint
model space, by sampling from the conditional pdf of the secondary parameters with respect
to the primary parameters, and (3} it is modified to sample from the posterior pdf, by apply-
ing the Metropolis rule, which uses the evaluation of the joint likelihood function to accept
or reject mode! transitions in the sampling chain. Finally, posterior marginal or posterior
conditional pdfs for the model parameters or the model properties can be straightforwardly

calculated from the set of joint models sampled by the chain.

1. Introduction

Interpretation of geophysical data 1s a complex process in-
tegrating many kinds of information. The guantitative treat-
ment of the geophysical data produces images of the stud-
ied Earth volume that must be matched with the geological
model of the area and with petrophysical information. This
combination of information, comrmonly solved by the expert
using qualitative criteria, is an inverse problem that can be
formalized into a method for probabilistic estimation of the
lithology. Such an integrated and quantitative approach toin-
terpretation is of 4 major importance in the present situation
of geophysical methods.

Geophysical exploration has developed a series of pow-
erful tools for temography, commonly consisting of the in-
version of a single geophysical data set to estimate the geo-
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physical related property: compressional velocity from ar-
rival times [ Bosch, 1997], conductivity from electromagnetic
data [Newman and Alumbaugh, 1997], mass density from
gravity data [Camacho et al., 1997), magnetic susceptibility
from magnetic data [Li and Oldenburg, 1996}, ctc. Never-
theless, conventional geophysical tomographic methods face
the problem of irregular data coverage over the surface of the
studied volume, producing irregular image resolution. This
problem is difficult to address for each isolated geophysical
technique and demands an effort on the integration of differ-
ent geophysical methods into a single inversion scheme.

The objective of this work is to present a general method to
invert several geophysical data sets, obtaining joint informa-
tion on several properties characterizing the physics and the
lithoiogy of the media. The method requires the modeling
of the media by joint description of several media properties,
The importance of this realistic media representation is that
the relations between properties can be described. This al-
lows the explicit introduction in the inverse problem of valu-
able information on petrophysics, geostatistics, and the ge-
ology of the region, as a way to couple the inversion of the
plural geophysical data set and as a way to estimate the litho-
logical media properties represented in the model.
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Figure 1. Parameter spaces and model spaces in the multiple data and multiple property geophysical prob-
lem. The link between the primary and the sccondary model space is provided by the petrophysical and the
geostatistical informatior. The link between the secondary model space and the data space is established
by the forward geophysical caiculation. The arrows indicate the forward direction from the primary model

space to the data space.

Petrophysical studies show that Earth rocks exhibit strong
correlation between their properties and strong dependence
of their physical properties on lithology. A large amount of
work has been devoted to the experimental and theoretical
study of these relations. Also, the description and simula-
tion of spatially dependent properties have been largely con-
sidered in geostatistical work. These studies provide a back-
ground for the joint modeling of several Earth media proper-
ties within a volume under exploration.

A probabilistic inference approach [Press, 1968; Wiggins,
1969; Jackson and Matsu "ura, 1985: Tarantola, 1987 Mose-
gaard and Tarantola, 1995; Mosegaard et al., 1997] is used
here to combine the prior information provided by petrophy-
sics, geostatistics, and the geclogy of the area with the infor-
mation provided by the plural geophysical observations. The
general mathematical framework used to formulate the prob-
lem requires the representation of the information by proba-
bility density functions (here after pdfs, probability densities
or simply densities), defined over the space of modei param-
eters. The information resulting from the combination is rep-
resented by the posterior pdf.

In the interdisciplinary context already described, the
present contribution consists in formalizing the problem of
multiple-property muitiple-data inversion, formulating the
structure of the correspondent posterior pdf and assembling
a4 Markov-chain sampling method adapted to this structure.
This theoretical work is presented in the two next sections.
Section 4 illustrates and discuses the methodology for infer-
ring the conditional pdfs from petrophysical and geostatisti-
cal information. Finally, section five presents a synthetic ex-
ample of the appiication of the method to a geologic media
consisting of a peridotite nape surrounded by granite recks.

2. General Formulation of the
Multiple-Property Inversion

The ohjective of the method is to estimate different me-
dia properties (see Figure 1) from the inversion of a plural
data set containing several types of geophysical data (seis-
mic, gravimetric, electric, etc.). The media properties con-
sidered in the theoreticai formulation couid be very general.
They include (1} those explicitly related by a physical the-
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ory to the geophysical data sets {e.g., mass density for gravi-
metric data, electric parameters for electric data), (2} those
characterizing the lithology of the rocks (e.g., lithotype, min-
eralogical composition), or (3) other properties characteriz-
ing rock structure or rock conditions (porosity, fluid content,
temperature, pressure, etc.). These variables could be cate-
gorical as lithotype or continuous as temperature.

In principle, the media properties may be represented by
continuous fields defined over a studied volume 2. How-
ever, the inference of these functions involves an infinite di-
mensional problem which is, in general, difficult to handle
(see, for instance, the work of Stark [1992] considering lin-
ear problems and simple priors). For practical purposes, the
common approach to follow consists in the parameterization
(discretization} of the property fields, With this operation,
the inference problem is translated into a finite dimensional
space.

To formalize the inference of the propertics within €2, con-
sider property fields following a parametrical model z; {x, m;).
defining the ith property as a function of a finite number of
model parameters m; and the positicnx € £2. Common field
models define the property field according to blocks in €2, in-
terpolation from a set of points in £2, or lincar combinations
of a base of functions. For example, for whole Earth tomog-
raphy, most researchers either divide Earth into a set of cells
and assume that seismic velocity is constant in these cells,
or they use a truncated spherical harmonic expansion in the
angular variables, tensored with some kind of polynomial in
radius. In the first case, the property ficld is a piecewise con-
stant function, discontinuous in the border of the cells, and
the model parameters are the velocity for each cell. In the
second case, the model parameters are the cocfficients for
each orthogonal function in the base, and the property field
1s the weighted superposition of these functions. Another ex-
ample is the parameterization {discretization) of the property
field by givingthe values of the field over a finite set of points
{control points) and choosing an interpolation ruie. In this
case, the model parameters would be the properly values at
the control points and the property field the interpolated field.

Let me call the property model parameter space A;, the
space coniaining the array of model parameters m;, and the
property model space Z; the space containing the property
fields calculated from the parameters. The joint parameteri-
zation requires a joint model parameter space being the prod-
uct space, M = M; x Ms x ... x My, and a joint model
space being the product space, 2 = 2y x Zyx ... x Zy. The
distinction between these two spaces is relevant in this work
because the prior information directly concerns the property
fields and has {0 be translated in prior information about the
model parameters.

Another terminology to be used along the work is the array
m = {m;,ma,..., my} called the joint model parameter
array; the array of property flelds originated from m via the
parameterization, z{x, m) = {z{x,m,), z2(x, ms),. ..,
21 (%, my ) } is called a joint property model; each individual
zi(x, my) is called a property model.

In the methodology followed here, the inverse problem is
formulated as an inference problem, consisting of updating
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the prior knowledge of the models, taking into account the
results of the geophysical experiences. The inference prob-
lem is formulated in the joint model parameter space M, and
the knowledge about the joint model parameters is described
by a pdf defined over A4. In the initial state of the infer-
ence, the knowledge about the model parameters is described
by a prior probability density p(my, ..., my}. The updated
knowledge is described by a posterior probability density
o(iny, ..., my), whichis obtained as [ Tarantola and Valette,
1982; Tarantola, 1987] '

o{my, . ...my) =cpg(m,...,m) L(my, ..., my),

with L{my, . .., my) being the likelihood function and ¢ be-
ing a normalization censtant. The likelihood function mea-
sures (in probability terms) the misfit between the geophys-
ical data calculated from the model and the observations. In
the next subsections, the structure of the the prior density
and the likelihood function in the multiple-data and multiple-
parameter inversion problem is considered.

2.1, The Prior Probability Density

The prior pdf over the joint model space is, in general, a
complicated function. It represents prior knowledge about
model properties at individual locations, spatial relations of
property values, cross-relations between different properties,
and spatial dependence of cross-relations. As a consequence,
in most real problems it would be difficult to formulatc this
density functiondirectly in the joint model space. A straight-
forward formulation is decomposing the density function in
two {or more) convenient factors by the rule of conditional
probabilities,

plmy. ... oy} =

gsip(mn+l y- oMl my) pp(my, .. mg).

{1

Above, a parliticn of the joint model space in two sub-
spaces is considered (Figure 1): the subspace of primary prop-
erties (M = M, % ... x M) and the subspace of sec-
ondary properties (Mgee = Moy % ... % My). The term
pplmy,.. . ,mg) is a marginal density in Mr; it contains
information about the primary media propertics. The term
oo {Mny1. .. .. my|my. ..., my,) isaconditional density in
M itcontains information about secondary properties and
the dependence of secondary properties on primary proper-
ties.

Such strategy for decomposing the joint prior pdfis known
in statistical inference work, where mpy = {my,...,m,}
are sometimes called “hyperparameters” [see Besag et al.,
1995]. For the present problem, it has the following advan-
tages.

1. Often we have privileged properties better related with
the structure of the media and more relevant to the determina-
tion of the rest of the properties. Primary simulation of these
properties is needed to simulate the rest of them [Deutsch and
Journel, 1992].

2. The conditional probability density is particularly con-
venient to introduce petrophysical laws (empirical or theo-
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retical) relating rock properties together. On the other hand,
the marginal probability density is convenient to describe the
properiies better constrained by the prior information. The
formulation accommodates these two different sources of in-
formation.

These advantages are particularly significant if lithology is
introduced in the model as a primary property. Physical rock
properties used for the geophysical calculations of the ob-
served fields are naturally dependent on lithology. They are
macroscopic consequences of the structure of the rock {com-
position, texture, and genesis}, which 1s described by litho-
fogical properties. This dependency has been largely stud-
1cd for different geological environments [Domenico, 1984;
Han et al., 1986; Christensen and Mooney, 1995] and can
be experimentally studied for a particular region [see Chris-
tensen and Mooney, 1995] by collection and analysis of sam-
ples. With the approach presented here, this information can
be inciuded in the inverse problem by the conditional pdf on
secondary properties.

Also, prior information based in the geologic knowledge
of the area is commonly available in lithologic terms (geo-
logic surface charts, probable lithotypes, geometric relations
between lithotypes, stratigraphic directions in sedimentary
formations, etc.). This information can be included in the
problem by the marginal pdf on the primary properties.

Important primary properties for Earth media description
depend on the scale and nature of the exploration problem.
Here are some examples: (1) for mantle structure, tempera-
turc, iron content [see Jordan, 1979], and phase changes;(2)
at the crustal scale, lithotypes, or silicium content [see Chris-
tensen and Mooney, 1995], for upper crust description, litho-
types; and for sedimentary basins description, lithotypes,
porosity, fluid content, and stratigraphic direction.

Depending on the properties and the information available,
this principle of decomposition could be applied again within

each subspace, producing a larger partitionof the model space.

For instance, in 2 problem including lithotypes, porosity and
elastic parameters, a primary simulation step could concern
the parameters of the lithotype model, a secondary step could
superpose a porosity field withineach region, conditioned by
the lithotype, and a tertiary step could simulate elastic param-
eters according to the lithotype and porosity.

The consideration of iithologic properties for a realistic
modeling of Earth media has been well established in geo-
sciences. In common exploratory situations, the physical rock
properties and its spatial laws vary significantly between the
different lithologies present in the region. However, inside
each lithology, statistical relations between properties {(e.g..
mean values and variograms, or more generally marginal and
conditional pdfs) can be better described and can be assumed
as statistically homogeneous (statistics are invariant by trans-
lations} in favorable situations. This assumption is very im-
portant because most models for estimation and simulation
of media properties are based on the hypothesis of statisti-
cal homogeneity, also called spatial stationarity. In conse-
quence, when heterogeneocus lithology s present ina volume
under study, a two-step simulation is mandatory [Deutsch
and Journel; 1992): a primary simulation of major litholog-
ical domains and a secondary simulation of the rest of the
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properties within the domain. In this way, within the ma-
jor lithological domains, the statistical homogeneity can of-
ten be assumed, and statistical homogeneous models can be
used to simulate the secondary properties within the lithotype
domains.

2.2. The Likelihood Fanction

Consider m different geophysical methods used to explore
the studied region (see Figure 1) and data parameter arrays
di,...,d,, describing the observations of each cne corre-
spondingly. The joint data parameter space is in this case
the product of the data parameter spaces for each geophysical
method considered in the problem, T = Dy xDe x .. . X Py
The information provided by these chservations can be de-
scribed by a joint probability density v(d;, . .., dy} defined
over the joint data space, with a product structure,

IT wid,

i=lm

v(di,...,dn} = {(2)

justified with the assumption that the observations are inde-
pendent across different geophysical methods. Consider also
that the geophysical forward problem can be solved exactly
and is represented by functions {g;i{m,;, ..., my) = df*'}
for each geophysical technique. To avoid further complica-
tions in the notation, these function are defined on the joint
model space M, although only a part of the model param-
eters would be relevant for each simulation method {e.g., a
gravity calculation needs only a mass density model). The
likelihood function is

L{m,...,m) =

v(gl(ml,...,mk),..,‘gm(ml,.,,,mk))‘

Because of the independence of observational uncertain-
ties between the geophysical methods (2), it follows imime-
diately that the joint likelihood function is the product of in-
dependent likelihood functions for each geophysical method,

Limi, .. ym) = [l ,wigi(m, ..., my)

= Hi:l,m L;(ml, . ..,mk).

This resuit aiso holds with forward calculation errors in-
dependent across the different geophysical methods. The as-
sumption of independence of the observational uncertainties
across different geophysical methods is realistic in most cases.
Sources of error affecting geophysical data (instrumental, en-
vironmental, buman, station positioning, COrrections) are com-
monly different across geophysical methods and surveys.

(3)

2.3, The Posterior Probability Density

Summarizing results of the previous subsections, the pos-
terior pdf in the multiple-data multiple-property problem
should be, in most cases,

G(mpri s msec) =

Bs)p (Mgec [Mpri) pp(DApr) H Li (mpr . Migec); (4)
P(mpr:ﬂigec} b

-

L(mpri .msec)
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m,,; denotes the array {m,, ..., m,} of primary model pa-
rameters, and mg.. denotes the array {my4q, ..., m} of
secondary model parameters.

To keep generality in expression (4), the likelihood func-
tion, L{myy;, Mg}, is defined over the joint model param-
eter space, although it would likely depend only on the sec-
ondary parameters if primary parameters are associated with

the lithologic description of the media. Similarly, the likeli-

hoocd function for a particular geophysical method,
Li(mpq, Mgec), depends on one (or a few) model property
parameter arrays {e.g., density model parameters for gravity
data).

The integration of the joint posterior density over the sec-
ondary parameter space gives the marginal posterior density
for the primary mode! parameters,

op(mp) = ¢ Pp(mpri)/ Os)p (Msec|rrpsi )

Adsee

Hi:i,m Li(mpl‘is n'l:«;ec) dimgec. (5}

In the above expression, the integral term 1s a likelihood
function for the primary model parameters. It is a combina-
tion of the joint likelihood function, L{mp,, mgec), with the
conditional density 8|, (Mgec My ).

A method to sample the joint posterior density is given in
the following section; it is based on a Markov-chain sam-
pler adapted to the structure of the posterior pdf given by (4).
Another approach may be useful to estimate the character-
istics of the true properties in the explored region from ex-
pressions (4) or (5). Using a gradient method or another op-
timization method a model maximizing the posterior proba-
bitity density could be searched. A maximum posterior pdf
model, together with uncertainties on its parameters, is an ac-
ceptable approximation of menomodal posterior pdfs. How-
ever, it provides an incomplete representation of the posie-
rior probability density, and it is a wrong representation of
probability densities having complex shapes and being mul-
timodal.

The posterior probability density of the multiple-data
multiple-paramcter inverse problem results from the combi-
nation of several nonlinear geophysical simulations and com-
plicated priors, and it is likely to be a complicated function.
Although the sampling approach commonly demands a larger
calculation effort than the optimization approach, it will be
developed here because it is a more general method and pro-
vides more information about the posterior knowledge of the
studied volume. In addition, the sampling approach proceeds
without problem categorical parameters, whereas a gradient
based optimization approach is limited o continuous param-
eters.

3. Sampling the Posterior Probability Density

As the posterior probability density resulting from a geo-
physical inverse problem is commonly a complicated func-
tion defined over a large and high-dimensional space, it can-
not be analytically integrated. Hence posterior probabilities
have to be calculated by statistical integration methods, con-
sisting of approximating the pdfintegral by a summation over
a sample taken from the support At of the pdf.
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Consider any sequence S = {m!, m? ..., m"} of joint
model parameter arrays; hereafter m" denotes the joint model
parameter array {m}, ..., m{} for the positiont of the se-
quence. Consider alse an indicator function, X (m) = {1, if
me A;0,ifm & A}, with A being a subset of the model
space. If S is a sample from o{m), it is well known that

1 .
/AU(IH) dIIl"—‘F Z X{m") + ¢,

t=1,N

(6)

with an error arbitrarily small, limiy 400 ¢ = 0.

The sample 5 allows fast and straightforward probability
calculations about any kind of request about media proper-
ties in the area {marginal and conditional probabilities) and
other studies as the identification of modes and the relative
probabilities of the modes. For example, summation (6) is
used in section 3 to calculate marginal histograms. To pro-
duce a sample from the posterior pdf, I use here a Markov-
chain Monte Carlo method combining (1} a conditional sam-
pling [Gelfand and Smith, 1990; Besag et al., 1995] of the
joint prior pdf and (2) a Metropolis sampling [Metropolis et
al., 1953; Hastings, 1970, Mosegaard and Taranrola, 1995]
of the posterior pdf.

A Markov-chain over the space M can be intuitively un-
derstood as the record of a walkin M, ST = {m? m?, ...,
mT}, visiting a point m" at each step ¢ of the walk, untila fi-
nal step 7. Mathematically, a chain, M{(62T) = (M1 M{2),
M 1, is a sequence of random functions indexed by a
variable t = 1,2,..., 7, usually called “time.” A Markov
chain is said to be ergodic to a probability density w{m} if
any outcome set of points, ST = {m! m?, . . mT}, con-
verges to a sample from w(m) as the number of steps in-
creases, no matter what the initial point m?! of the chain is.
There are different methods to construct Markov chains er-
godic to an arbitrary density w{m); the two better studied
methods are the Metropolis sampling and the Gibbs sampling
(forareview on Markov chain samplers, see the work of Tier-
ney (1994) and Besag et al. [1995]).

Assume that a Markov chain, M}()tr:n?,y, ergodic to the
marginal prior density pp, (m,; ) has been defined. fet uscall
this Markov chain the primary chain. The practical way to
produce such an algorithm is by following perturbation rules
for model parameters, each perfurbation representing a step
in the chain. For simple probability densities p,(m;) the
appropriate randem functions can be easily defined. Com-
plicated probability densities can be treated as well, using
sampling algorithms as Metropolis or others (see work al-
ready referenced). Given the primary chain, the method here
developed describes the way to construct 2 Markov chain,
Mgc,;’t?i or» CTgodic to the posterior probability density given
by {4), in two stages.

First, the primary chain is extended to the joint model pa-
rameter space, taking advantage of the conditional density
Bsjp(Mgec[Mpei}. An outcome mf, . of this pdf, conditioned
by the primary chain valuc mfm . provides secondary model

(12T

parameters forany step? of ML, 100 L. These secondary model

parameters complete a joint model parameter array m* =
{m,., m;ri} defining a Markov chain in the joint model pa-
rameter space M let us call this Markov chain in A1 the
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priot chain, Mgm_‘f ', Due to this construction, the prior
chain is ergodic to the prior density p{m). The method de-
scribed consists of sampling from a joint pdf by sampling
from its marginal and conditional pdfs; it is a method exten-
sively used in statistics [e.g., Gelfand and Smith, 19901
Second, to generate a Markov chain ML;L)W sampling
the joint posterior density o(m), the prior chain is modified
following the Metropolis rule at ail steps of the chain [Hast-
ings, 1970; Mosegaard and Tarantola, 1995]; 1 foltow the
formulation of Mosegaard and Tarantola (1995]. Suppose
that the posterior chain is in the step ¢, with an outcome m*®

&) t+1 {t+1}
of Mpostenor, to determine the outcome m*+* of Mpostmor
the Metropolis rule is as foliows.
1. Consider m'® to be the current joint model paramelcr

array visited by the prior chain and take an outcome m'}!

from M :olr} followingthe rules defining the prior chain. Let
us call thlS outcome the candidate joint model parameter ar-
ray.

2. Make m*t! = m't!

Can

with probability,

e}/ L(m")].

3. Otherwise make m'T! = m®,

4. Continue with (1).

Above, L(m) is the joint likelihood function for the mul-
tiple data according to expression (3), Itis well known that a
chain generated with this procedure is stationary to the poste-
rior probability density e(m). A detailed description of the
Metropelis algorithm is presented in the work of Mosegaard
and Tarantola [1995] and an application to the analysis of
seismic reflections is presented in the work of Mosegaard
et al. {1997] including interesting prior information and the
characterization of data uncertainties.

p = Min[l, L{m

4. Inferring the Prior Conditional Density
From Field Samples

In order 10 reproduce the real behavior of the media prop-
erties in the studied region, fy, (Mpyq, ..., mymy, .. my)
should be inferred from petrophysical and geostatistical data.
This section presents an example, 1o be used later in a syn-
thetic test, together with an overview of the common geosta-
tistical methods that can be used 1o this purpose.

4.1. From Rock Samples to Global Probability Densities

Figure 2 shows an cxample of the information provided by
plots of rock propertics. The logarithmic transformation of
thc mass density and the magnetic susceptibility was used all
along this work; for the two cases this transformation showed
to be heipful to better model the property variability. Log-
arithmic transformed properties are identified with an aster-
isk following the symbol of the nontransformed property and
named, for simplicity, in the same way of the nontransformed
property.

Figures 2a and 2b show representations of granite and peri-
dotite samptes in the bidimensional space of mass density p*
and magnetic susceptibility £*. These properties have been
measured at surface temperature and surtace pressure condi-
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tions by Horen [1997]. The plots show marked differences
between the distributions of the physical properties for the
two types of rocks: (1) the granite data show, on dverage,
smaller magnetic susceptibility and mass density than the peri-
dotite data, (2) the dispersion of the mass density is much
larger for the peridotite samples than for the granite sam-
ple, and (3) the mass density and the magnetic susceptibil-
ity are anticorrelated in peridotite samples, whereas they are
positively correlated for granite samples. The positive cor-
relation of magnetic susceptibility and mass density in gran-
ite, and their anticorrelation with the silicium weight con-
tent of the rock, has been shown with a larger data set by -
Bourne [1993]. There is also a physical reason for the anti-
correiation between magnetic susceptibility and mass density
in peridotite. Horen [1997) shows that generation of mag-
netic minerals in peridotitcs is assoctated with alteration pro-
cesses (serpentinization) which also have an effect on reduc-
ing the mass density.

Assuming statistical homogeneity, each of these plots can
be regarded as a sample from a large population of cranite
and peridotite rocks characterized by conditional densities
f(p™, k™| 1it = granite, z = surface) and f{p*, k"] lit = perido-
tite, z = surface). These pdfs describe the probabilities for
the secondary properties (p* and k* } conditioned by the pri-
mary properties (lithotype and depth) in field rock samples.
Figures 2c and 2d show a grayscale graph of the conditional
pdfs inferred from the samples using a bivariate Gaussian
model. The centroid and the covariance matrix were calcu-
lated from the samples shown in Figures 2a and 2b, respec-
tively. The parametrical approach followed is better adapted
for scarce sampling than a nonparametrical approach, as it
provides reasonable interpolation to the poorly sampled re-
gions of the support space; complex or multimodal probabil-
ity densities can also be modeled as a mixiure of monomodal
ones, ' '

The estimaticn of the conditional pdfs from the samples
may be compiicated by several problems, like spatial cluster-
ing (for an overview on declustering techniques see the work
of Isaaks and Srivastava [1989]). Also, complete represen-
tation of lithotypes and petrophysical properties may be un-
likely, and additional information {data sets for other regions
or proposed petrophysical laws) could be used. For exam-
ple, in the absence of additional data, the conditional pdfs of
Figure 2 (corresponding to z=surface} could be generalized
to other depths, by correcting the centroid according to re-
ported [e.g., Christensen and Mooney, 1995] effects of depth
on rock properties.

Another problem to be aware of is the regularization of
property statistics due to spatial averages in the model. Lab-
oratory measurements of the sample rock properties are av-
erages in centimetric scale, whereas the model parameteriza-
tion of the three-dimensional volume under study is likely to
represent a much larger scale tn spatial resolution. The effect
of thischange of scale in petrophysical data support has a sys-
tematic influence on the property dispersion and ¢n the form
of the distribution. Averaging values together has the effect
of reducing the variance of the data and making their distri-
bution more symmetric (more Gaussian} while keeping the
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Figure 2. Cross plots of the logarithm of the magnetic susceptibitity and the logarithm of the depsity for
(a) granite and (b) peridotite rock samples. The magnetic susceptibility is in SI units, and the density is in
kg/m® units before the logarithmic transformation. Grayscale plots represent contour levels of a bivariat
Gaussian model for (c) the conditional pdf f(p™, k™| lit = granite, z = surface) and (d) the conditicnal pdf
f(p*, k| lit = peridotite, z = surface), with parameters calculated from the data shown in Figures 2a and

2b respectively.

same mean. The covariance function is also systematically

affected by increasing its range. Whether the sample pdf and
the covariance function need to be corrected from this effect
or not depends on several factors, like the covariance range,
the model spatial resolution, and the form of the covariance
function. In general, if the covariance range is larger than the
model resolution distance and the covariance is high within
the model resolution distance, the property will be very con-

tinucus, so rock sample properties and model properties will
have the same distribution. In other situations, the smoothing
effect due to spatial averaging in the model can be significant
and the pdf may be better inferred from block sampte aver-
ages than from the original samples. The methods providing
the regularization of the pdf and the covariance function are
well known in geostanstical work [Journel and Huijbregts,
1978, Isaaks and Srivastava, 1989].



756

Figure 3, Parameterization of the secondary properncs at
points x,, inside region £}y, and points v; inside region 4.

4,2, Spatial Correlation of the Properties

Let us consider here that the lithotype field is parameter-
ized given a geometrical description of the region £ filled by
each kithotype and the secondary properties within each re-
gion are parameterized given its values in a series of control
points (Figure 3). Taking as an examplc a volume filted with
a graniteregion and a peridotite region, the secondary param-
eters would be the values of the density g* and the magnetic
susceptibility £~ for all control points within the lithotype re-
gion.

Sgea = {67 (31 ) P (=) k’”( )
Sper — {,0* (y oy (yM k=
withx, € Qgra and y; € Oper.

Properties at the control points are spatially related, and
this relation can be introduced within the model parameters
given by (7). If a multivariate Gaussian model is chosen to
relate secondary parameters in granite and peridotite regions,
the conditional pdfs would be

Og|p (Sgral lit = granite) o
X[} (s ) Cloen —
Potp (Spec lit—peridotite) o
P[4 (Sper — Sper) C (Sper —

Sgra]): (8)

gper‘]):

with Cgra and G, being the covariance matrices and 5,4
and 8¢, being the mean values of the secondary parameters;
the mean values of p* and £* and the elements of the covari-
ance matrix can be inferred, in favorable situations, from the
geostatistical analysis of field data samples.

The sampling process of the secondary model parameters
may be arranged in such a way that only one parameter is per-
turbed at a time. In this situation the conditional pdf needed
to simulate a secondary model parameter p* (xy} is

05" (=)o (x1), . 4" (e ) K530 - K ()
OCG)(p[ i (’;(T:) Pc} ] (9)

with p; being the simple cokriging estimate of p” (xy) and
77 being the simple cokriging variance of the estimation
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[Deutsch and Journel, 1992]. Both parameters can be found
by solving a lincar system of equations.

Other metheds and more complicated spatial models can
be found, for instance, in the work of Davis [1987], Isaaks
and Srivastava [1989], Deutsch and Journel [ 1992], Dietrich
{1993], Almeida and Journel [1994], and Oliver [1995].

5. A Synthetic Example of Lithologic
Tomography

The method presented in this work can be applied to dif-
ferent scaies and environments of the geophysical prospec-
tion. Here, a test based on synthetic data calcujated from
two-dimensional (2-1)) modets is presented. Inthetest, grav-
ity and magnetic data are integrated to discriminate a peri-
dotite nape from a background granite media. The proper-
ties considered in the inversion are the lithotype (granite or
peridotite), the density, and the magnetic susceptibility.

* Figure 4a shows the “true” model of the peridotite nape
used to calculate the “true” gravimetric and magnetometric
data for 41 stations spaced 0.5 km apart. Gravimetricstations
were considered Iocated at the surface of the model and mag-
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Figure 4. (a) True and (b) initial lithotypc models used in the
inversion synthetic test. Peridotite regions are shown in dark
gray, whereas the granite region is shown in light gray. Boid
triangles in Figure 4a show the horizontai position of gravi-
metric and magnetometric stations; the vector represents the
direction of Earth’s magnetic field used for magnetic data cal-
culations. Lines in Figure 4b show the triangularization of
the 2-D section.
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Plate 2. Peridotite frequency at 80 x 40 grid points within the 2-D section. The frequency is calculated over
all lithotype models generated by the Markov chain sampler, between model 20,000 and model 1,000,000,
from (a) the prior pdf, (b) all data posterior pdf, (c, d) all data posterior pdf using other random number
sequences, (e) the magnetic data posterior pdf, and (f) the gravimetric data posterior pdf.
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netometric stations at an elevation of 0.35 krn (airborne). The
data fields were the vertical component of the gravity acceler-
ation and the total magnitude of the magnetic intensity. The
uncertainties of these observations were considered to be 2
nT for the magnetic data and 2 mGal for the gravimetric data.

The model was parameterized by dividing the space into
prisms of triangular section, with axes perpendicular to a
2-D section and infinite lateral (axial) extension. The litho-
type, the magnetic susceptibility, and the mass density were
constant within the prisms. The forward calculation of the
gravitationai field of a prism was done by the methed de-
scribed by Chapman [1979], and the forward calculation of
the magnetic field by the method of Botf (1963]. Both meth-
ods provide the physical exact solution of the fields due to
homogeneous prisms. The Earth magnetic field was consid-
ered inclined 135° in counterclockwise rotation from the &
axis of the models.

The 10 km x 20 km modei section was divided into 400
triangles connected as shown in Figure 4b. The parameters of
the model were {1) the position of the triangle vertices (fixed
for the four boundaries of the section}, (2) the lithotype of
each triangle (granite or peridotite), and (3) the logarithm of
the density and the logarithm of the magnetic susceptibility
for each triangie. The division of the 2-D section in triangu-
lated elements was chosen because this parameterization is
often used for geclogical modeling.

5.1. Simulation of ihe Lithotype Regions

The parameters affecting the lithotype regions were taken
as the primary set of model parameters. They correspond
with parameters 1 and 2 of the above enumeration. The prior
informationincluded in the simulation of the lithologic mod-
cls was as follows.

1. The lithotype at the surface (z = 0} was constdered
to be known {geological chart}, so the lithotype for triangles
bounding the surface (z = 0} was fixed following the surface
lithology given by the initial model.

2. The topology of the regions was maintained constant,
following the topology of the initial model, in order to keep
the consistency with a prior geological model. To maintain
this condition, regions were not allowed to be disconnected,
and the creation of new regions was not allowed.

3. Anestimation of the total volume (area in2-D) fraction
of peridotite was considered to introduce prior information
about the relative amount of the two lithotypes in prior mod-
els. Also, an estimation of the expected surface to volume
ratio (area to perimeter in 2-D) was used; this global vari-
able has influence on the frontier appearance (smooth or den-
dritic).

To generate lithological models, an initial Markov chain
was constructed perturbing the lithological model parame-
ters. A step in the chain consisted of one of the following
perturbations.

1. Select a vertex in the model and change its position.
In this operation, conditions were verified to avoid triangle
overlapping. '
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2. Select a triangle in the frontier of lithotyperegions and
change its lithology. In this operation, conditions were veri-
fied to avoid region disconnection.

These two types of operations were arranged in a regular
sequence along the chain. The initial Markov chain genes-
ated in this way was modified using the Metropolis rule to
sample models with the expected distribution of the volume
fraction of peridotite and the volume to surface ratio. The
peridotite expected volume was provided as 0.33 £+ 0.05 of
the total volume in the model and the expected peridotite sus-
face area to volume ratio was given as 1 = 0.1 km™?!. The
resuiting prisiiary chain summarizes prior information about
the lithotype models. '

5.2, Simulation of the Secondary Properties

The secondary model parameters in this example were the
density p* and the magnetic susceptibility £* for each prism
of triangulated section. To simulate these parameters, a Gaus-
sian model for the conditional pdf was adopted, as described
by (8). The covariance function for p* and k*, as well as a
cross-covariance function , also followed a Gaussian model,

C e pr (h) = Cpr o (0) exp[—3h%/a?],
Creg+(h) = Croge (0) exp[—3h?/a?],
Crnpr (B) = Ciepo (0) exp[—3h%/a?),

(10)

with a being therange, f the separation distance, and C s 4 (0)
Clri+ (0) and Ci .+ {0) the density p™ variance, the magnetic
susceptibility £* variance and the covariance inferred from
sample data in Figure 2. The range was chosen to be 4 km
in the granite region and 2 km in the peridotite region; the
same range was used for p* and k*. Therange and the covari-
ance model were not inferred from geostatistical field .data.
They wer, however, chosen to follow the characteristics of
the density and the magnetic susceptibility in Canadian gran-
ites [Bourne, 1993] that show smooth variations and covari-
ance ranges of several kilometers.

For the simulation, property control points were consid-
ered at the center of each triangle. The model resolution dis-
tance (separation between triangle centers) was of the order
of 0.5 km, several tines smailer than the assumed covariance
range for the media properties. Hence the estimated vari-
ation of the properties within the triangular sections of the
model could be considered small, as additionally, the covari-
ance function model was Gaussian. In conseguence, no reg-
utarization of the pdfs shown in figure 2 was needed.

Also, no depth correction to the centroid of the pdfs was
introduced, as it turned out to be irrelevant for the types of
rocks and depths under consideration. Density data for peri-
dotiteand granite were presented by Christensen and Mooney
[1995] at different dopths, showing that the variation of the
mean at the surface and at 10 km depth were smaller than the
standard deviation of the mean.

The cosimulation of the secondary parameters p* and &£* of
a triangle was demanded by two types of independent oper-
ations along the chain: (1) each time the triangle changed its
lithology (& change in the lithological model} and (2) select-
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ing at random any triangle and simulating again its secondary
properiies.

The cosimulation, at a control point xn, was performed by
taking in sequence outcomes from the conditional pdfs,

Pr{k* (xn)lpt (1), - - " (RN ) KT (X)L A (%)),
2(p* (xn)[p" (x1), - .-, T (XN-1), K7 (X0 ), -, RE(x));

constructed from the simple cokriging estimate and variance
as in (9). These two parameters are obtained as solution of a
simple cokriging system of equations.

Plate i shows three models pulled from a chain of 1 mil-
lion models generated by the prior Markov chain constructed
in this way. It can be seen that the models follow the prior in-
formation: (1) the fixed lithology at the surface and the fixed
topology, (2} the total volume of peridotite within the expec-
tation, (3) the magnetic susceptibility and the density show
the spatial correlation range of the properties (4 km in the
granite and 2 km in the peridotite) and {4) the density and
magnetic susceptibility are anticorrelated in the peridotite re-
gion and correlated in the granite region, as expected (see
Figure 2). _

Plate 2 shows a histogram of the peridotite lithotype in a
regular grid on the 2-D section, for the same run used to pull
the models shown Plate 1. The frequency of the peridotite {1
or {) at each position of the grid is accumulated for outcomes
20,000 to 1,000,000 of the chain and averaged at the end of
the chain. This histogram represents the marginal prior prob-
ability density of the lithotype for each grid point. The fre-
quency of the peridotite is dominated, as expected, by the
prior information: the fixed lithotypes at the surface, the lim-
ited volume, as well as the fixed topology make the peridotite
lithotype highly probable below its outcrop in the surface.

The calculated data for 20 models pulled from the same
chain are shown in Figures 5a and 5c. The misfit from the
calculated data and the true data indicate that the geophysicat
data should significantly contribute to the posterior probabii-
ity density.

5.3. Sampling Models From the Joint Posterior Density

The Markov chain process sampling the prior pdfis mod-
itied with the Metropolis rule in order tc generate a process
ergodic to the joint posterior pdf, #s described in sectien 3.
The geophysical likelihood has been calculated using spa-
tially independent data uncertainties of o,, = 2 nT for the
total magnetic intensity anomaly and oy = 2 mGal for the
vertical gravity acceleration. The L norm was used to mea-
sure the data misfit, and the likelihood function was taken as

cal _ gobs deal _ gobs
L{m) x exp[-(z .I.ql__q_l__[) _ (Z rJ—_J._'

Og Tn

)

with d; being the gravity data and d; being the magnetic data.
The choice of norm is arbitrary in this synthetic example; the
Ls was also used with adequate resuits.

The progress in data misfit reduction is shown in Figure
6 for a 1 million sample long chain. Reduction to a stable
level is achieved in less than 15,000 iterations. In the phase
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of misfit reduction, the models sampled by the chain are stili
influenced by the choice of initial model. Hence this initial
phase, commonly called “burn-in period,” is not taken into
account for the inference, as usual in Markov chain Monte
Carlo [Besag et al., 1995]. All calculations of estimates in
this work exclude this phase (the first 20,000 iterations) and
are using the other 980,000 model outcomes from the chains.

Plate 3 shows three models taken at large repular inter-
vals from the posterior chain. In all models there are general
structural features that are constant: the peridotite region at
the left is small and centered below its cutcrop, and the peri-
dotite region at the right is large and dips to the right, as for
the true model. Figures 5b and 5d show the calculated data
and the true data as well as the uncertainties for 20 models
pulled from the same chain. They indicate that models in the
chain correctly explain the true data, although the models are
still very variable in some aspects, as shown in Plate 3.

Plate 2 shows the accumulated histogram for the peridotite
from model 20,000 to model 1,000,000, This histogram rep-
resents the posterior marginal probability density for the peri-
dotite over the grid points. The histogram is very different
from the prior histogram (Plate 2a), and the area of high peri-
dotite probability resembles the form of the true peridotite
nape. It shows some details that could not be seen in indi-
vidual models because they are very variable. For instance,
the fault step in the top of the peridotite nape is clearly iden-
tified from the posterior histogram.

Independent execntions with different random number se-
quences were performed to analyze the stationarity of the pos-
terior histogram. The results are shown in Plates 2¢ and 2d,
presenting variations in details but maintaining the major char-
acteristics.

The peridotite histogram obtained using only magnetic data
{Plate 2¢) and only gravity data (Plate 2f} show more spa-
tial dispersion of the peridotite and indicate that both types
of data provide enough information to distinguish the large-
scale structure of the nape in this example.

Common qualitative criteria to examine the convergence
of the chain in applications to physics are based on (1) re-
garding the stabilization of estimated values for the param-
eters (or the functions of parameters) of major importance
ta the interpretation and {2) comparing the similarity of es-
timated values across independent chains. These are neces-
sary cenditions for the convergence, providing in most cases
adequate confidence in the estimates. As the form of the pos-
terior pdf is not known, no sufficiency conditions exist for
the convergence of the chain in a finite number of iterations
[Smith and Roberts, 1993; Robert, 1993], unless some as-
sumptions are made about the regularity of the posterior pdf.

An additienal criterion should be included in the case of
inference using prior information. As the prior information
introduced in the problem is known, an important diagnostic
step is to (3} verify that the prior Markov chain is, in fact, re-
producing the adequate prior features, hence indicating the
ability of the chain to adequately explore the modet space
constrained by the prior information. This is an important
issue as, in common applications, the prior density is Aatter
than the posterior (the likelihood with observations is sup-
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Figure 5. (a} Calcutated gravity data and (c} calculated magnetic data for 20 models (including cases of
Plate 1) pulled at reguiar intervals of 50,000 models from the 1,000,000 maodel set generated by the Markov
chain sampler from the prior pdf. The data calculated from the true model are plotied in white, and the
observation uncertainties { &1 standard deviation } are represented by a light gray band. {c} Calculated
gravity data and (d) calculated magretic data for 20 models (including cases of Plate 3) pulled at regular
intervals of 50,000 models from the 1,000,000 model set generated by the Markov chain sampler from the

posterior pdf.

posed to further constrain probable modets to a smaller re-
gionof the model space}. Again, the convergence of the prior
chain, in say, N iterations, does not warrants that the poste-
rior should converge in the same iteration length. A major
difficulty in convergence arises if the likelihood function is
very irregular, introducing “barrier” problems in the poste-
rior density (isclating modes surrounded with regions of very
low probability). In this case, independent chains should be
trapped by these barmriers, hence allowing a diagnostic of the
problem by using criterion 2 enumerated above.

These three criteriahave been used inthis example. Elabo-
rated quantitative techniques have been proposed to monitor
Markov chain convergence but their generality and reliability
are under discussion (see critical work of Cowles and Carling
[1996] and the debate about the use of muttiple chains [Gel-
man and Rubin, 1992] or a single long chain [Geyer, 1992]).

Another interesting aspect of Markov chains s the depen-

dence between consecutive samples. Consecutive jointmodel

outcomes from the Markov chain are highly correlated, as

only one parameter or asmall number of parameters are chan-
ged at each step. The correlation distance {in iterations) is

different, depending on the particular parameter (or function

of parameters) of interest, on the form of the posterior den-

sity, and on the walk design {step schedule, step directions,

step lengths). One can be interested, for instance, in the to-

tal volume of granite, in the total data misfit, in the depth of
a particular frontier, or in the values of a particular model pa-

rameter. Therelevant parameters or functions can be recorded
along the chain to further comptete statistical study (autocor-

relation function, probability bounds, posterior marginal his-

togram, correlation with another parameter or function).

The estimation of parameters or functions can be performed
using consecutive samples from the chain or using selected
samples pulled at regular intervals from the chain. The auto-
corretation of the series is sometimes used to estimate a cor-
relation distance and pull approximate independent samples
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of the relevant parameter from the complete chain, As long
as there is evidence on the chain convergence, both consec-
utive dependent samples and selected approximate indepen-
dent samples provide unbiased estimates. The practical dif-
ference between the two approaches consists in the way to
calculate the uncertainties of the estimation (see the work of
Hastings {1970] or the work of Tierney [1994] for appropri-
ate formulas taking into account the correlation). Neverthe-
less, the evaluation of uncertainties of the estimation can be
addressed in a simple and generat way by running indepen-
dent chains and comparing the resulting estimates, as pre-
sented here in Plates 2b, 2¢ and 2d for the lithotype spatial
histograms.

6. Discussion

The general strategy of the lithologic inversion method pre-
sented here is schematically tliustrated in Figure 1. In com-
parison with the conventionai geophysical inversion, a more
complete parameterization of the media is considered, par-
ticularly by the introduction of model parameters describing
the iithology. Lithologic properties of the rocks are not ex-
plicitly present in the physical laws governing the measured
geophysical fields, but they are relevant to the observations
as long as the physical behavior of the media is strongly de-
termined by lithology.

Depending on the geological setting, the exploration in-
ierests, and the geophysical observations, the lithologic me-
dia characterization could be different. As the upper crust is
very heterogeneous, the lithotypes are a straightforward way
to characterize the media. Classification techniques such as
the discriminant analysis or the clustering analysis can help
to define the lithological categories to be represented in the
model according to the available data. In the exploration of
sedimentary environments, the porosity and the fluid con-
tent are strongly correlated with the physical rock properties;
these continuous properties may be included as lithologic pa-
rameters in the joint model and estimated from geophysical
data.

At a crustal scale, the silicium weight content of the rock
may be another good parameter to be estimated from geo-
physical data. Silicium is the principal mineral component of
crustal rocks with a significant variation, ranging from 40%
to 80% in most common rocks, and it is strongly correlated
with several physical rock properties | Miller and Christensen,
1994; Christensen and Mooney, 1993].

Under particular conditions, the joint posterior pdf formu-
lation given in section 2 reduces te simpler inversion prob-
lems. If properties are assumed constant within each litho-
type region, the conditional prior pdf on secondary parame-
ters would be trivial, and the inversion would only be related
to the estimation of the primary model parameters. On the
contrary, if a constant lithological medel, or 2 homogeneous
lithelogy, is assumed, ne simulation of primary parameters
would be needed and the inversion would be only related to
the joint estimation of the secondary model parameters. If
only one media property and one geophysical data set is con-
sidered, the joint posterior pdf reduces to the simple form of
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Fignre 6. Progress of the misfit between calculated and true
data as a function of iterations of the posterior Markov chain,
for the same run presented in Plate 3. (a) The first 20,000 it-
erations. (b) The complete chain of 1 million iterations. Mis-
fit reduction is achieved within the first 15,000 iterations to
maintain a stabie level. Note that the first 20,000 models are
excluded in the lithologic estimation of Piate 2.

the posterior pdf for a conventional geophysical inverse prob-
lem.

The generation of lithological models in the example of
section 5 followed a simpte method based on random per-
turbations of the primary model parameters with some prior
constraints and conditions. More sophisticated methods for
the parameterization and the simulation of lithotype regions
can naturaily be considered and used to construct the primary
Markoev chain. There are generally two major approaches for
the simulation of categorical property modeis (like the litho-
type modets): the indicator approach and the object oriented
approach.

The indicator approach is based in a grid type parameteri-
zation to describe the lithotype field. It associates to any cat-
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egory of rock an indicator continuzous variable ranging from

0 to 1. This variable is interpreted as the probability of the

category and it is interpolated between the points of the grid

according to prior information on the spatial covariance of

the indicator variable and according to conditioninglithotype

data [Deutsch and Journel, 1992; Mallet and Shtuka, 1997)].

The object-oriented approach is based on the description of

the lithotype regions by parameterizing its boundaries. The

parameterization is adapted to the expected shapes of the mod-
eled objects (layers, faults, domes, etc.).

The different methods allow us to introduce geological prior
information concerning geometrical relations between litho-
types, lithotype probabilities, expected volumes, topology,
ete. In the example presented, some geological prior infor-
mation was considered. In particular, the topology of the
mode] was fixed (which fixes the number of regions of each
ithotype in the model and its neighborhood relations). Tt
maintained compact the peridotite regions, avoiding the dis-
persion of peridotite in multiple regions. This coastraint, used
in the example, 1s net inherent to the method and may not be
used in other applications, or could be used in a flexible man-
ner by letting the number of connected regions vary between
some bounds according to prior probabilities.

A Markov chain Monte Carlo method was described in
this work to sample from the joint posterior pdf given by (4).
Based on the same formulation of the posterior pdf, optimiza-
tion methods may also be developed to search for models
maximizing the pdf. In particular, gradient methods may be
used when the concerned model parameters are continuous.

The joint posterior probability density and the sampling
method presented in sections 2 and 3 were formulated with
sufficient generality 10 accept any kind of model parameteri-
zation. A particular model parameterization for the secondary
properties was chosen in section 4, to introduce in the simu-
iation the petrophysical and geostatistical prior information.
This parameterization consisted in the definition of the sec-
ondary properties over a finite set of nonstructured points
withineach lithotyperegion. Then properties in these control
points were simulated by a Monte Cario method according
to geostatistical information. Another way to parameterize
and stmulate the secondary media properties may also be use-
ful. like describing the properties within the region by coef-
ficients of a base of continuous fields {polynomial functions,
harmonic functions).

In the synthetic test the conditional probability density
Byjp (Mgec [y} was assumed to follow a multivariate spa-
tial Gaussian model. Itis important to remark that the Markov
chamn sampling method described in section 3 1s valid for
any kind of conditional density 8|, (Mgcc By} on the sec-
ondary model parameters, including nonhomogeneous mod-
els. As long as any model for the conditional pdfis defined,
the conditionals can be calculated and the sampling method
can be performed.

The use of a Markov chain sampling approach in the illus-
trative example presented 15 justified by several reasons. Al-
though the conditional density ), (Mgec [y} model was
simple {Gaussian}, the joint prior pdf, which results from a
product with the prior pdf over the primary model parameters
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(1), does not follow such a simple Gaussian model. The re-
sulting joint priors obey complex spatially nonhomogeneous
statistics incorporating the informationa of fixed lithology in
the surface and topologic constraints for the lithologic re-
gions. For illustration, consider the prior marginal of the sec-

‘ondary properties for a particular position x in the section:

these marginals are multimodal because of the changes of
lithology at the coordinate point x. Another advantage of the
Markov chain sampling approach is the ability to incorporate
in the model categorical parameters (as lithotypes) in a natu-
ral way. Under this realistic parameterization, simpler meth-
ods based in gradient calculations are not useful, as gradients
are not defined over categorical variables. In conclusion, the
synthetic test shown, not being the most complicated case
that could be treated with the method, is interesting enough
to be used as an example in this work.

The computations presented in the synthetic tests involved
around 2000 parameters describing the joint model, and the
execution of the 1 million iterations of the posterior Markov
chain tock around 2 hours on a workstation. Application to
real 2-D problems, including several lithotypes, is on course
with execution times of the order of 4 hours. For very highly
dimensional model parameter spaces, as for realistic 3-D in-
version, specialized techniques to increase efficiency of the
sampling might be incorporated to the sampling scheme here
described. 1 can mention two approaches: {1) adapting vari-
ance reduction techniques such as importance sampling
iKloek and van Dijk, 1978; Tierney, 1994] and (2) carefully
designing the walk (step length, step directions, step sched-
ule) considering simultaneous variations of several parame-
ters in a single step. The quantity and quality of the prior in-
formation play a major role on posterior sampling efficiency,
as it introduces prior constraint in the region of the volume
space which is relevant to explore. One may have a very
large number of parameters, but if these parameters are effec-
tively constrained and related by the prior information, the
actual freedom of the models is highly reduced. This is an
implementation advantage for the present method, which is
able to introduce strong realistic prior information from the
petrophysics, geostatistics, and geology.

The estimation of the lithologies from petrophysical data
has been widely used in muiltiple-data well-log interpretation
[ Delfiner et al., 1984, King and Quirein, 1986; King, 1990;
Muoss, 1990]. It is based on statistical associations between
the physical and psendo-physical properties given by the logs
and true lithology established after sample extraction. The
discrimination of subsurface lithostratigraphy combining at-
tributes from seismic reflection sections and well-log data
has also beer applied [Angeleri and Carpi, 1982; Sinvhal and
Khattri, 1983, Doyen, 1988; Fournier and Derain, 1995], in
particular for deriving reservoir description. In these works,
statistical relations are built between seismic signal attributes
and reservoir properties from a calibration population con-
sisting of wells and their adjacent traces. This information
is used to condition the interpolation of media properties be-
tween the wells. Berkhout and Wapenaar (1990] and Lortzer
and Berkhout [1992] described in a theoretical work a step-
wisc scheme to arrive at lithological estimation from seismic
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reflection data. As in the above referenced works, the litho-
logic estimation for oil reservoir description is commonly
based on the previous results of the inversionor processing of
the geophysical data. This is one difference with the method-
plogy presented here, in which these two stages are integrated
in the inversion.

7. Summary and Conclusions

Earth modets in geophysics have been commonly parame-
terized in terms of, or to describe, physicai properties explic-
itly related with the data by a physical law: However, the ui-
timate aim of the data acquisition and analysis is, vsually, to
estimate the composition, lithology or petrology of the rocks
at locations where they have not been sampled. In this work,
& general methodology was presented formulating the prob-
lem of lithologic estimation as an integrated inverse prob-
lem, having as input plural geophysical data, petrophysical
and geostatistical information, and to some extent, geologi-
cal information describing the structure of the model.

The different types of information involved in the problem
of lithologic estimation can be combined following a proba-
bilistic infererice approach. A joint posterior pdf was formu-
lated (4), considering multiple properties in the model and
multiple types of geophysical data. In this formulation the

joint prior pdf was decomposed over a partition of the modei
parameter space in a primary subspace and a secondary sub-
space, according to a hierarchy in the properties, and the joint
likelihood function was straightferwardly obtained as a prod-
uct of the likelihood functions associated te each geophysi-
cal data set. The formulation is able to incorporate any kind
of geophysical data and any kind of forward modeling of the
geophysical observations.

A Markov chain Monte Carlo method was developed to
sample joint models according to the joint posterior proba-
bility density. The organization of the sampling algorithm is
adapted to the structure of the posterior pdf itself: (1} an ini-
tial Markov chain should be designed to sample from the pri-
mary prior pdf, (2) it is generatized to the joint model space
sampling from the prior conditiona! pdf (describing secondary
parameters conditional to primary parameters), and (3} it is
modified to sample from the posterior pdfusing the Metropo-
lis fule.

The inference of the conditional prior density is based on
petrophysical and geostatistical information and it foliows
common geostatistical methods, in most of its aspects. Some
important problems to deal with are the representation of the
lithologies and the spatial clustering of the field samples, the
parameterization of the pdfs, the modeling of the spatial cor-
relatior between the properties and the reguiarization of sam-
ple pdfs according to the scale of the moded spattal resolution.

It is shown irn this work that the information describing
rock property relations has a relevant contribution in the struc-
wre of the joint posterior pdf. This information allows us to
infer conditional pdfs indispensable for the joint model sim-
ulations. Following this view, the acquisition and analysis
of petrophysical and geostatistical data in exploration cam-
paigns may be better valorized and considered as important
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to interpretation as the acquisition of the geophysical data it-
self.
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