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ABSTRACT

We jointly invert gravity and magnetic data following a Monte
Carlo method that provides estimation for a 3D model of the
structure and physical properties of the medium. In particular,
layer interface depths, the density and magnetic susceptibility
fields within layers are estimated, and their uncertainties are
described with posterior probabilities. This method combines
the gravity and magnetic data with prior information on the
mass density, magnetic susceptibility statistics, and statistical
constraints on the interface positions. The resulting model
realizations jointly comply with the observations and the prior
statistical information.

INTRODUCTION

Hydrocarbon reservoirs in many areas are several km deep and
are related with complex geologic and tectonic processes.
Images obtained from seismic surveys maybe unable to show
the deep structure of the sedimentary cover and the crystalline
basement. Thus, gravity and magnetic field data are important
in these areas to estimate the basement geometry and the large-
scale structure of the basins.

Certainty in the estimation based on potential field data (gravity
and magnetic data) is commonly affected by the non-unique
relationship between model and data spaces, i.e. a set of model
configurations equally explain the data. In addition, other
sources of uncertainty like observation and modeling errors are
involved. To improve the inference and reduce uncertainty we
combine the available information in the area: gravity and
magnetic data, statistics for the density and magnetic
susceptibility and constraints on mayor sedimentary structure.

Our approach is based on a statistical formulation for joint
inversion of multiple geophysical data (Bosch, 1999)
previously applied to joint inversion of gravity and magnetic
data in 2D (Bosch et al, 2001; Bosch and McGaughey, 2001).
This method allows for quantitative integration of gravity,
magnetic, petrophysical and other prior information, to produce
an estimation of the major layer structure geometry and the
property fields inside the layers. The formulation is solved
using Monte Carlo methods (Mosegaard and Tarantola, 1997)
providing as result a description of the uncertainties via the
assessment of model parameter probabilities

THEORY AND METHOD

We formulate the inverse problem with a statistical approach
and describe each type of information with probability density
functions (pdfs) on a model parameter space. The posterior
probability density function combines the different components
of the information and is given by (Bosch, 1999),

o(m) = const p(m) Lgrey(m) Linge(m), (1)

where m is the array of model parameters describing the
structure and medium properties. In the equation above the
posterior density function, o(m), is a product of three factors:
the prior probability density function, p(m), and the likelihood
functions, Lg,(m) and L,,(m), associated with the gravity
and magnetic data correspondingly.
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Figure 1. Model parameterization showing sediment and
basement layers, cells used to describe the mass density and
magnetic susceptibility 3-dimensional fields, the topographic
relief and the sea bottom.

In the present case, the model space is a composition of three
subspaces,

m = (mz > Myep , Mgyg ) > (2)
where m, indicate the parameters defining the geometry of the
model layers, mgy,, and my, are the parameters defining the

mass density and magnetic susceptibility fields respectively.
The prior probability density is formulated as,

p(m) = const 4) ( Myep , Mygyg | m, ) pz(mz)’ (3)



the product of a marginal probability density and a conditional
probability density. The former, is the prior pdf on the layer
structure p,(m,), containing the information on the positions
and geometry of each layer interface represented in the model.
The later, ¢( mgye, , Mg, | M, ), contains information on the
statistical distribution of the density and the magnetic
susceptibility within each layer. These probability densities are
modeled with a multivariate Gaussian function that takes into
account the properties spatial covariance and the correlation
between density and magnetic susceptibility.

Table 1. Parameters defining the statistical model for medium
properties and basement interface.

PARAMETER | SEDIMENT | BASEMENT | UNIT
Mean density 2136 2850 kg/m3
Mean
susceptibility -6 2 Logio (SD)
Standard deviation
for density
Standard deviation
for susceptibility
Covariance range
for properties in X 50 50 km
direction
Covariance range
for properties in Y 50 50 km
direction
Covariance range
for properties in Z 10 10 km
direction
Covariance range
for interface depth - 100 km
in X direction
Covariance range
for interface depth -—-- 50 km
in Y direction
Standard deviation
for interface depth

100 100 kg/m3

0.8 0.8 Logyo (S)

1 km

The solution of the inverse problem is obtained using a Markov
Chain Monte Carlo method adapted to sample model
realizations according to the posterior density described in
equation (1). As a result, the model realizations generated by
the chain honor the different types of information combined:
gravity and magnetic observations, statistical information on
density and susceptibility, and statistical constraints on the prior
configuration of the interfaces.

NUMERICAL EXAMPLE

We define in the area a geological model for a sedimentary
basin with three layers: (1) a water body describing the sea
volume, (2) a sedimentary layer, and (3) the crystalline
basement layer. The topography is used to describe the
mountain relief and is taken into account to calculate the
gravity and magnetic fields, and the bathymetry is used to
describe the seabed geometry.

We parameterize the model describing the interface that
separate the layers, defining the depth interface values on a
regular 2D grid, and the values of density and magnetic

susceptibility in regular blocks within each layer, as shown in
Figure 1.

We created a synthetic model to test the inversion method,
using true bathymetry, topography data and interpreted
basement depths from a northwestern region of Venezuela.
From the “true” model we calculated the corresponding
“observed” gravity and “magnetic” data to be used in the
inversion test. The statistical parameters used to define the
property and interface statistical prior model are described in
Table 1.

INVERSION RESULTS

All model parameters, with the exception of the bathymetry
and topography, were modified with the Monte Carlo inversion
algorithm to fit the data, explore the model space and generate
the realizations from the posterior probability density. We
used a combination of Gibbs and Metropolis samplers in the
algorithm to produce a chain of 2.5 million iterations. A local
modification of model parameters is proposed per iteration:
variation of an interface depth at a grid node or the physical
properties (density and susceptibility) of a cell in the model.
The parameter modifications are accepted according to the
posterior probability, equation 1. Hence, the models generated
by the chain jointly comply with the geological model, the
prior statistics of physical properties and interfaces and the
gravity and magnetic observations.
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Figure 2. Progress in misfit reduction with iterations of the
sampling algorithm.

Figure 2 shows the progress in reduction of data misfit as
iterations proceed. As usually in Monte Carlo methods, the
first part of the chain (burn-in period) is influenced by the
initial model and will not be used for posterior statistics. The
phase of convergence, which is indicated with the reduction of
the data misfit, involved the first 0.5 million iterations. Hence,
we generated 2 million model configurations to calculate the
parameter estimates and the posterior probabilities.

Figure 3 shows the “true” basement depth and the
correspondent “observed” gravity and magnetic data in the
area, as well as the basement depth, calculated gravity and
calculated magnetic data form a model in the chain taken at
random.
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Figure 3.
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“True” basement interface with the corresponding “observed” gravity and magnetic data, and a realization sampled from the

posterior probability density function using the Monte Carlo method with the corresponding calculated gravity and magnetic data.

We used for the likelihood function term, in equation 1, a data
uncertainty of 2% of the range of the anomaly. The figure
shows the adequate fit between the observed and calculated
anomalies.

From the chain of model realizations we calculate for each
layer a volume of probabilities for the occurrence of the layer
in given coordinate positions. The probabilities correspond to
the frequency of the layer in the given position divided by the

number of realizations. Figure 4b show a probability plot at a
vertical section through this volume. Figures 4c and 4d show
plot examples of probability for the depth to the basement,
bellow given coordinate locations in the surface. The plots fully
describe the uncertainty in the location of the geological bodies
included in the model.
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Figure 4. Probability plots summarizing inversion results. (a)
True depths to crystalline basement in the area. (b) Vertical
section showing probability for finding the crystalline basement
rocks. Location of the trace of the section is shown with a white
arrow in plot 4a. The two white stars in plot 4a indicate
location of the two vertical probability density plots, (c) and
(d), which show probability of depth for the sedimentary basin
basement. The grey dashed line indicates true basement depth.

CONCLUSION

The Monte Carlo inversion method used in this work allows us
to successfully combine in a quantitative way different types of
information in 3D, estimating model parameters and describing
their posterior probabilities. By combining gravity and
magnetic data with a statistical model for the physical medium
properties and interface geometry we infer the structure of the
sedimentary basin in a numerical example, jointly explaining
the two observed potential fields and honouring the prior
statistical model.
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