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Inversion of traveltime data under a statistical model
for seismic velocities and layer interfaces

Miguel Bosch1, Penny Barton2, Satish C. Singh3, and Immo Trinks4

ABSTRACT

We invert large-aperture seismic reflection and re-
fraction data from a geologically complex area on the
northeast Atlantic margin to jointly estimate seismic ve-
locities and depths of major interfaces. Our approach
combines this geophysical data information with prior
information on seismic compressional velocities and the
structural interpretation of seismic sections. We con-
strain expected seismic velocities in the prior model
using information from well logs from a nearby area.
The layered structure and prior positions of the inter-
faces follow information from the seismic section ob-
tained by processing the short offsets. Instead of using
a conventional regularization technique to smooth the
interface-velocity model, we describe the spatial cor-
relation of interfaces and velocities with a geostatis-
tical model, using a multivariate Gaussian probability
density function. We impose a covariance function on
the velocity field in each layer and on each interface
in the model to control the smoothness of the solu-
tion. The inversion is performed by minimizing an ob-
jective function with two terms, one term measuring
traveltime residuals and the other measuring the fit to
the statistical model. We calculate the posterior uncer-
tainties and evaluate the relative influence of data and
the prior model on estimated interface depths and seis-
mic velocities. The method results in the estimation of
velocity and interface geometry beneath a basaltic sill
system down to 7 km depth. This method aims to en-
hance the interpretation process by combining multi-
disciplinary information in a quantitative model-based
approach.
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INTRODUCTION

The estimation of a large-scale velocity model is an impor-
tant aspect of seismic data analysis and is necessary to gen-
erate input for migration or wave-form inversion. However,
velocity estimation is not a trivial problem. In seismic reflec-
tion analysis, one source of difficulty is the coupling between
reflector depths and overlying velocities. Another problem is
the spatially irregular ray coverage that results from the acqui-
sition geometry, complex structures, and a heterogeneous ve-
locity field. The velocity estimation can be improved by (1) in-
creasing the offset range, (2) taking into account diving waves
in addition to reflections, and (3) providing statistical con-
straints for the prior mean values and smoothness of model
velocities and interfaces.

In recent years several papers have been published (e.g.,
McCaughey and Singh, 1997; Zelt and Barton, 1998; Hughes
et al., 1998; Hobro et al., 2003) that include wide-angle reflec-
tion and refraction data in traveltime inversion. In these meth-
ods, the model is parameterized using a fine grid, and regu-
larization is applied to constrain the inversion. Tikhonov-type
regularization has been the most common approach (Consta-
ble et al., 1987; Docherty, 1992; Vasco et al., 1996). It is based
on penalizing one particular order of the spatial derivatives
of the property, or a linear combination of different orders
of the spatial derivatives, by adding a norm of the derivatives
to the objective function to be minimized with the inversion,
thus raising the problem of which derivative orders or particu-
lar linear combination to choose (Zhang and Toksöz, 1998).
Another approach to smoothing the model is based on the
truncation of singular values of the normal equations. Stork
(1992) and Michelena (1993) show that this method is able to
adapt the smoothing to the acquisition geometry and irregu-
lar gridding, but it is not very efficient for a large number of
model parameters.
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We propose an alternative approach based on geostatistical
methods that characterize the modeled property fields. With
up to second-order statistics, such as expected values, vari-
ances, and spatial covariances (or equivalently, spatial var-
iograms), significant features of the variability, smoothness,
and texture of the property field can be described. Recently,
several authors have used geostatistical information in inver-
sion based on Monte Carlo algorithms. The work by Bosch
(1999), Bosch and McGaughey (2001), and Bosch et al. (2001)
combines geostatistical information, including spatial correla-
tion description, with geophysical data for inversion. Statisti-
cal prior information based on outcrop data has been used by
Mosegaard et al. (1997) for inversion of seismic data, and sev-
eral authors have worked on geostatistical inversion of seismic
data for estimation of elastic parameters in reservoirs (Hass
and Dubrule, 1994; Torres-Verdin et al., 1999; Bosch, 2004).

From a mathematical point of view, there is an equiva-
lence between the description of spatial smoothness of prop-
erty fields via covariance functions (geostatistical approach)
and via the minimization of spatial derivatives (Tikhonov
regularization). This equivalency can be extended to other
common types of spatial modeling, such as harmonic- or
polynomial-based fields [see work by Dubrule (2003) and
Chiles and Delfiner (1999) for more information on this sub-
ject]. The geostatistical description, however, fits naturally
within the framework of statistical inversion. Additionally,
from a practical point of view, it seems simpler to under-
stand the relationship between property field appearance and
spatial covariances (Isaaks and Srivastava, 1989; Deutsch and
Journel, 1992) than its relationship with conditions on spatial
derivatives.

The spatial resolution achieved in traveltime tomography
is very heterogeneous, depending on several factors, such as
raypath coverage, diversity in ray directions, and Fresnel zone
radius. Given the practical importance of accounting for this
heterogeneity in the inversion, some authors have followed
variable, adaptive, or multiscale parameterization approaches
for spatial resolution problems (Böhm and Vesnaver, 1999;
Böhm et al., 2000; Zhou, 2003; Trinks et al., 2004). In order
to introduce a variable regularization, our method allows a
choice of type and range of the covariance function used in the
statistical model for each layer and interface. One advantage
of this approach is that we do not need to adapt the param-
eterization by introducing variable cell sizes or variable node
separations.

In this paper, we describe the application of a geostatistical
model to layer velocities and interfaces for nonlinear inver-
sion of seismic traveltime data. The information required for
the definition of prior mean values and deviations of velocity
parameters is based on well data. The layered model and prior
mean values for interface depths are derived from processed
seismic data. Other parameters of the statistical model, such
as the covariance functions, are fixed to values that produce
a model consistent with the resolution of the traveltime to-
mography. We use Newton’s method to find an optimal model
that jointly honors the statistical model and explains the trav-
eltime data. We apply this approach to a seismic profile from
the northeast Atlantic margin, including traveltimes for reflec-
tions and diving waves that have been identified up to offsets
of 20 km.

GEOSTATISTICAL INVERSION

Our method is based on Bayesian inversion of traveltimes,
which allows the user to combine data and prior information.
The general formulation is given in terms of the posterior
probability density:

σ (m) = c ρ(m) L(m), (1)

where m is the model parameter array, σ (m) is the poste-
rior probability density, ρ(m) is the prior probability density,
L(m) is the likelihood function, and c is a normalization con-
stant (Tarantola, 1987). The prior probability density repre-
sents the information on the media model before fitting the
traveltime data. The posterior probability density includes the
prior information and the information provided by the trav-
eltime observations. We model the prior information density
with a multivariate Gaussian function with mean mprior and
model covariance matrix Cm:

ρ(m) = c exp
[
− (m − mprior)TC−1

m (m − mprior)
2

]
, (2)

which is commonly used in geostatistics to describe spatially
distributed property fields. The information on the variabil-
ity and the spatial correlation of the model parameters is con-
tained in the covariance matrix. The diagonal elements in Cm

are the variances and describe the variability of the parame-
ters from the mean values. The nondiagonal terms in Cm de-
scribe the spatial correlation of the velocity field and are calcu-
lated from a covariance function model. In most geophysical
work using a multivariate Gaussian prior model, the parame-
ters are considered spatially independent, and hence the prior
model covariance matrix is usually a diagonal matrix. In our
approach, the velocities and the interface depths are spatially
correlated; therefore, Cm is nondiagonal.

The likelihood function is described here as a Gaussian
function

L(m) = exp
{

− [dobs − g(m)]TC−1
d [dobs − g(m)]

2

}
, (3)

where dobs are the observed data, and g(m) are the traveltime
data calculated from the model by solving the forward prob-
lem. We consider data uncertainties to be independent; there-
fore, the covariance data matrix Cd is diagonal. The indepen-
dent nature of data errors has been a common assumption in
seismic tomography. However, this independence is not an in-
trinsic limitation of the method presented here, since we carry
the full data covariance matrix in all formulae below.

We are considering here the prior centroid and the covari-
ances as known parameters of the statistical model. In a more
complex formulation, they may be considered hyperparame-
ters, also subject to probability distributions. An example of
this approach is the work on wavelet estimation by Buland
and Omre (2003) using Monte Carlo methods.

Our inverse problem is based on the determination of
model parameters that maximize the posterior probabil-
ity. This process is equivalent to the minimization of the
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following objective function:

S = [g(m) − dobs]TC−1
d [g(m) − dobs]

2︸ ︷︷ ︸
geophysical objective

+ (m − mprior)TC−1
m (m − mprior)

2︸ ︷︷ ︸
geostatistical objective

, (4)

The first term of the objective function describes the fit of
the observed data with calculated data for a particular model
m. The second term describes how well the model complies
with the geostatistical information. The relative influence of
each term in the objective function is controlled by the data
and model variances, respectively, and is given in the diagonal
elements of the covariance matrix. The smaller the variance,
the larger the influence of the corresponding term in the ob-
jective function will be.

To minimize the objective function, we use an iterative ap-
proach that involves linearizing the traveltime function g(m),
calculating a model perturbation, and repeating the procedure
until convergence is obtained. The expression for the gradient
of the objective function is obtained by differentiating the ob-
jective function with respect to the model parameters:

∇S = GTC−1
d [g(m) − dobs] + C−1

m (m − mprior), (5)

where G is the matrix of partial derivatives of the calculated
traveltimes with respect to the model parameters. An approx-
imate expression for the Hessian matrix is obtained by differ-
entiating the gradient with respect to the model parameters
and neglecting second-order derivatives in g(m):

H(S) = GTC−1
d G + C−1

m . (6)

Using Newton’s method (Tarantola, 1987), the linear equa-
tion H(S)�m = −∇S can be used to solve for the model per-
turbation �m:(

GTC−1
d G + C−1

m

)
�m = C−1

m (mprior − m)

− GTC−1
d [g(m) − dobs], (7)

which can be rewritten as(
CmGTC−1

d G + I
)

︸ ︷︷ ︸
curvature of S

�m

= mprior − m − CmGTC−1
d [g(m) − dobs︸ ︷︷ ︸

direction of steepest descent

], (8)

Equation 8 requires the model covariance matrix instead of
its inverse. It has, as well, a dimensionless matrix (the curva-
ture of S) on the left-hand side. A biconjugate gradient algo-
rithm (Press et al., 1997) is used to calculate �m by solving
the linear system of equations that is given by expression 8.
Any algorithm used to solve this system of equations needs to
comply with nonsymmetric matrices since the curvature of S is
a nonsymmetric matrix; therefore, a plain conjugate-gradient
algorithm would not be adequate.

POSTERIOR UNCERTAINTIES AND RESOLUTION

It is useful to derive error bars for the solution obtained with
nonlinear optimization procedures, such as the one described
here, and to analyze the influence of prior information and
data. In principle, a full description of posterior uncertainties
and the shape of the posterior density could be achieved using
Monte Carlo exploration methods, which are not treated here.
We study uncertainty and resolution on the linear approxima-
tion of the traveltime forward problem around the optimal
model. All posterior statistics mentioned below refer to this
approach.

With the forward problem being linear, the likelihood func-
tion, equation 3, is Gaussian. Thus, the posterior density,
equation 1, is also Gaussian. In this approximation, the pos-
terior covariance matrix is the inverse of the Hessian matrix,
and its diagonal elements are the posterior variances of the
model parameters. The calculation of posterior uncertainties
by inverting the Hessian matrix requires the inversion of two
matrices: the prior covariance matrix term of the Hessian and
the Hessian itself. A more efficient way to perform the calcula-
tion is to use the curvature matrix A = (CmGTC−1

d G + I). The
inverse of the Hessian can then be obtained from, H(S)−1 =
A−1Cm, requiring the inverse of only one matrix.

As our technique combines geostatistical and geophysical
information, it is important to address the issue of the relative
influence of each one in the estimation of velocities and inter-
face depths. The importance of prior information in geophys-
ical inference has been a matter of discussion (e.g., Scales and
Sneider, 1997; Scales and Tenorio, 2001). The relative influ-
ence is spatially variable since the resolution provided by the
geophysical data depends on the ray coverage: the estimated
property field in nonilluminated areas of the model (i.e., far
from raypaths) should be influenced only by the geostatistical
information, whereas in densely illuminated areas, it is largely
influenced by the geophysical data.

To evaluate this problem, we consider a true model, mtrue,
such that the observed data is dobs = g(mtrue), a perturbed
true model, mtrue + δmtrue, with observed data, dobs + δdobs ≈
dobs + Gδmtrue, and a perturbed prior model is mprior + δmprior.
We assume that prior and true model perturbations follow the
geostatistics defined by the model prior information. The cor-
responding expression for the model update, equation 8, after
these perturbations is(

CmGTC−1
d G + I

)
(�m + δm) = mprior + δmprior − m

− CmGTC−1
d [g(m) − dobs − Gδmtrue), (9)

with δm being the difference between the estimated model up-
dates for the perturbed and unperturbed prior and true mod-
els. By subtracting equation 8 from equation 9, we obtain the
expression for the estimated model perturbation:(

CmGTC−1
d G + I

)
δm = δmprior + CmGTC−1

d Gδmtrue.

(10)
Again, using the notation A for the curvature matrix at the

left-hand side, multiplying by the inverse of A, and recogniz-
ing the matrix (A – I) in the right-hand side of the geophysical
data term, we obtain the expression

δm = A−1δmprior + (I − A−1)δmtrue. (11)
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Equation 11 describes how a perturbation of the expected
prior model and a perturbation of the true model expressed
through the geophysical data are combined to give a pertur-
bation of the solution within the validity of the linear approx-
imation of the forward problem.

We are interested in analyzing the effect on the estimated
model of both prior and true model perturbations that comply
with the spatial correlation defined for each layer and inter-
face, i.e., multivariate Gaussian with covariance matrix Cm.
Gaussian spatially correlated perturbations are obtained by
the common method of the square root of the correlation ma-
trix (e.g., Davis, 1987; Dietrich, 1993) δmprior = R1/2

m δm̃prior

and δmtrue = R1/2
m δm̃true, where Rm is the model correlation

matrix and δm̃prior and δm̃true are multivariate independent
(i.e., spatially uncorrelated) Gaussian deviates of zero mean
and variance given by the diagonal elements of the model co-
variance matrix, Cm. Making the corresponding substitution in
equation 11 we obtain

δm = A−1R1/2
m︸ ︷︷ ︸

prior
information
contribution

δm̃prior + (I − A−1)R1/2
m︸ ︷︷ ︸

geophysical
information
contribution

δm̃true, (12)

Equation 12 shows that decorrelated prior and true model
perturbations linearly combine to give the inversion solu-
tion, with the corresponding weighting matrices A−1R1/2

m and
(I − A−1)R1/2

m . These two matrices describe the relative influ-
ence of prior and geophysical information, respectively. Note
that the two matrices sum to the square root of the correla-
tion matrix, which means that the contributions are comple-
mentary. In particular, as the square-root correlation matrix
has the value of one in the diagonal, corresponding elements
of the diagonals of the two matrices (geophysical information
and prior information) add to a total of one.

To easily understand the meaning of the matrix coefficients
in linear equation 12, it is useful to consider the specific cases
of prior and true model perturbations centered at arbitrary pa-
rameters i and j, correspondingly, and having the typical size
defined by the correlation function. These perturbations cor-
respond to δmi = R1/2

m δi, and δmj = R1/2
m δj, with δi being of

value one for the ith parameter and zero for the other param-
eters, and δj being the equivalent for the jth parameter. Thus,
in this case we have the model solution perturbed by

δmij = A−1R1/2
m︸ ︷︷ ︸

prior
information
contribution

δi + (I − A−1)R1/2
m︸ ︷︷ ︸

geophysical
information
contribution

δj, (13)

Figure 1. Acquisition geometry used in the seismic experiment
to obtain a large range of offsets from 200 m to 30 km. Pass 1:
0–6 km, 6–12 km, and 12–18 km. Pass 2: 0–6 km, 18–24 km,
and 24–30 km.

where ith column of the first matrix, A−1R1/2
m , is the pertur-

bation caused by the prior model, and the jth column of the
second matrix, (I − A−1)R1/2

m , is the perturbation caused by
the geophysical data.

Notice that expression 13 evaluates the influence on esti-
mated model parameters caused by single prior or true model
features of regular size according to the model spatial corre-
lation, and expression 12 evaluates the influence caused by
arbitrary prior or true model features that honor the spatial
correlations given in the geostatistical model. In contrast, ex-
pression 11 evaluates the influence on estimated parameters
caused by independent parameter variations in the true or
prior model. For the particular case of spatial statistical inde-
pendence across model parameters (i.e., diagonal model co-
variance matrix), the correlation matrix Rm is the identity ma-
trix; hence, the geophysical information contribution (the last
term in expressions 12 and 13) is simply I − A−1, which is the
common data resolution matrix (Backus and Gilbert, 1968)
used in standard geophysical inversion. It is a particular case
of our formulation that accounts for spatially related model
parameters.

SEISMIC DATA

We use data collected during a wide-aperture seismic ex-
periment along a seismic profile over the northeast Atlantic
margin. These data were acquired using a two-ship, two-pass
geometry with both vessels towing 6-m-long streamers and
sources. The separation between the vessels during the first
pass was 6 km, providing an offset range of 18 km. For the
second pass, the separation was increased to 18 km, leading to
a total offset coverage from 200 m to 30 km (see Figure 1).

Figure 2a shows the near-offset (6-km) stacked section, af-
ter poststack depth migration, with the major structural fea-
tures in the area indicated. Three continuous sedimentary lay-
ers can be seen above a series of high-amplitude discontinuous
reflectors. Deep reflectors are obscured by seabed multiples.
Strong reflectors between 3.5 km and 5 km depth correspond
to a system of sills — discontinuous layers of laminar basalt
intrusions ranging from several tens of meters to 100 m thick,
which typically intrude surfaces of weakness within the sedi-
mentary layers, such as faults or sedimentation surfaces. Sills
may sometimes form horizontally branched Christmas-tree-
type structures with several levels. Continuous events below
the sills are multiples of reflectors above.

The velocity model used for stacking and migration (Fig-
ure 2b) was obtained by conventional normal-moveout
(NMO) semblance analysis of common-depth-point (CDP)
gathers. This velocity field is poorly constrained beneath the
basaltic sills and inaccurate for the layer just above the sills
because of the complex geometry of sill reflectors, although it
is much better constrained for the three shallower continuous
layers. In this work, we are using traveltime tomography to
produce an alternative velocity model.

Since the model under consideration consists of sedimen-
tary layers, sills, and a basement, we parameterized the model
with corresponding layers separated by interfaces. The geosta-
tistical description of the velocity (expected values, variances,
and spatial covariances) is independent for each layer and for
each interface. The velocities and interfaces were modeled
using cubic splines (Hobro et al., 2003), and the traveltimes
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were calculated with a ray-tracing methodology (Farra , 1990;
Hobro et al., 2003).

Although reflections from the sills are discontinuous, we in-
cluded traveltimes of some of these reflectors in the inversion
since they provide useful constraints on the velocity of the up-
per layers. To include these reflectors in the model, we used
a continuous interface, representing only one level of sill and
connecting neighboring sills. We refer to this interface as a
pseudo-interface to differentiate it from the lithologically con-
tinuous interfaces bounding layers 1 to 3. For diving rays trans-
mitted below this pseudo-interface, we impose velocity conti-
nuity across it, which is the same as considering the absence
of sills for deeper phases. This is justified because the sills are
not present everywhere, and their typical thickness is from 80
to 100 m, producing a relatively small one-way traveltime ef-
fect on traversing rays (approximately 8 ms) that has been
included in the data uncertainties for the diving-ray phases
(75 ms). Thus, the pseudo-interface represented in the model
has only the effect of providing a reflection surface for the sim-
ulation of the selected sill events; its influence on other phases
is negligible.

The model array, m in equations 1–13, includes a descrip-
tion of the velocities for each layer and each interface. Pa-
rameters corresponding to the same velocity layer or the same
interface are considered spatially dependent and statistically
homogeneous, whereas parameters of different layers or in-
terfaces are considered statistically independent, with the ex-
ception of velocities in layers 4 and 5. In the latter case, veloci-
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Figure 2. (a) Poststack depth-migrated seismic section in the
area showing major structures used to define the layered
model for the traveltime inversion. Layers are separated by
continuous interfaces (dotted dark green). (b) Interval veloci-
ties derived from the stacking-velocity model and used for the
migration shown in (a). Lines show (prior) layered model in-
terpreted from the seismic section, shown dotted dark green
in (a).

ties are considered spatially correlated across these two layers
to model sills embedded in a continuous sedimentary medium,
as discussed previously. In this application, we are dealing with
approximately 5000 model parameters, including layer veloc-
ity and interface depth parameters.

Figure 3 shows a typical shot supergather and some data
picked for the inversion. Traveltime data were picked man-
ually for sources at 1-km intervals. We used manual picking
because of the discontinuity of the sills and deeper reflectors
and the low S/N for long-offset arrivals. Short-offset-reflected
phases 1, 2, and 3 correspond to the bases of layers 1, 2, and
3 shown on the stacked section (Figure 2a), and phase 4 cor-
responds to the strong reflection from the sills. At longer off-
set, phases 5, 6, and 7 correspond to diving rays turning pro-
gressively at greater depths. No strong arrivals were observed
beyond 20-km offset. Zero-offset traveltimes picked from the
stacked section for all interfaces except the basement interface
are also used in the inversion.

Data variances (i.e., the diagonal entries of matrix Cd in
equation 9) result from the accumulation of errors from time
recording, phase identification, time picking, and calculation.
Because of the relatively small traveltime sampling interval
(4 ms) and calculation error (less than 4 ms), the dominant
components of our data errors correspond to the phase iden-
tification and time pick. To account for these uncertainties,
we use a data standard deviation of half a dominant period
(25 ms) for reflections and a dominant period (75 ms) for div-
ing waves.

GEOSTATISTICAL INFORMATION

The geostatistical information provided for each layer in the
model consists of (1) an estimation of the velocities and in-
terface depths, (2) their uncertainties, and (3) a description
of the spatial correlation of the modeled properties with the
covariance function and ranges. Concerning the covariance
functions, we used a Gaussian covariance function for all ve-
locity layers and interfaces with the exception of the pseudo-
interface marking sill reflectors, where we used an exponential
covariance function appropriate for the rough character and
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Figure 3. Shot supergather showing four selected events at
short offset and three at long offset used for the traveltime
inversion.
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discontinuity of the sills. The choice of covariance func-
tions and their ranges is part of our geostatistical model
assumptions.

Although there are no wells along this line, we had access
to confidential well information from a nearby area. We had
access only to crossplots of the P-wave velocity with depth be-
low the seafloor, containing sand, shale, limestone, and basalt
data. Combining this information with interval velocities de-

Figure 4. (a) Description of the statistical model input as prior
information for the inversion. The expected velocities are plot-
ted with colors and the expected depths of the interfaces
with continuous lines. The variabilities of interface depths are
shown with vertical lines ending with black circles; the line
size corresponds to ±3 standard deviations. The variabilities
of the compressional velocities are indicated at three positions
by two-color boxes showing ±3 standard deviations. The el-
lipses show ranges of spatial continuity (covariance function
ranges) for the velocity field. The covariance ranges for the
interface depths are shown with horizontal lines ending with
black circles to the right side of the figure. (b) Model obtained
after the geostatistical inversion of traveltimes. (c) Seismic sec-
tion poststack depth migrated with the velocity field shown in
(b). Interface depths estimated from the inversion are super-
imposed (dotted dark green).

rived from stacking velocities, we were able to tentatively as-
sociate the three shallower layers with clastics and the two
consecutive sedimentary layers (layer 4 above the sills and 5
below the sills) with clastics and limestone. From the cross-
plots, we extracted the linear trend of the velocity with depth
below seafloor for clastics and clastics with limestone. We used
these trends for the prior expected velocities and their vari-
ance in the three shallower layers and layers 4 and 5, respec-
tively. Prior uncertainties (one standard deviation) for veloci-
ties were 0.2 km/s for the three shallower sedimentary layers,
0.3 km/s for the two consecutive layers (sediments above and
below the sill system), and 0.1 km/s for the basement.

The velocity model obtained from stacking velocities was
not used for definition of the prior values of the velocity field
or the variances. We preferred information from the cross-
plots of well log data, which was independent from the seis-
mic data. Additionally, the crossplots presented well log data
down to 5 km depth below the seabed, whereas the stacking
velocities were poorly constrained below 2.5 km depth below
the seabed.

The prior model for interface depths was constructed from
interface positions from the processed seismic section. These
depths are affected by uncertainties in the velocity model ob-
tained from stacking velocities and used for migration. We as-
signed uncertainties to the prior interface depths to accom-
modate these errors. Prior uncertainties (one standard devia-
tion) for interface depths were 50 m for the seabed, 100 m for
the three shallower reflectors, and 300 m for the sill pseudo-
interface and the basement. An interface for the basement was
not visible on the processed seismic section. After tests per-
formed with ray tracing, we found that a basement dipping
toward the east was needed to explain the phase with longest
offset arrivals.

Figure 4a shows a compilation of information defining the
geostatistical model given as input to the inversion. The plot-
ted velocity field corresponds to the expected values for
the velocities and interfaces, which were obtained from the
velocity-versus-depth plots for different types of sediments.
Also, deviations from the velocity (shown as colored boxes in
each layer) were obtained from these crossplots. The ellipses
in the figure describe the range of spatial covariance of the ve-
locity field, showing the size of the covariance ranges in the
vertical and horizontal directions for each layer. The smooth-
ness of each interface is controlled by the covariance function
model and range, shown by bars to the right side of the figure.
With our choice of ranges, we demanded smoother velocities
and interface geometry for the bottom part of the model and
allowed higher spatial resolution for the shallower part of the
model.

For traveltime inversion, it is necessary to consider the min-
imum size of features that can be resolved by the inversion,
which depends on data quality and ray density. Diversity in
ray directions (crossing of rays) is also important to contribute
independent linear equations to the Frechet derivative matrix.
We adapt model smoothness to the decreasing spatial resolu-
tion of the tomography with depth by the definition of the co-
variance function, allowing us to account for the reduction of
ray coverage with depth (see Figure 5) and the enlargement of
the Fresnel zone for deeper rays (Hubral et al., 1993; Spetzler
and Snieder, 2004). The Fresnel zone in our experiment has a
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diameter of as much as 0.7 km for rays in the shallower layers
and as much as 1.5 km for the deepest rays.

For the first three sedimentary layers, we use spatial covari-
ance ranges of 3 km for the horizontal direction and 200 m
for the vertical direction, which is consistent with structure
and stratigraphy in these layers, where vertical variations have
a much shorter range than horizontal variations. For layer
4 (above the sills) and layer 5 (below the sills), covariance
ranges for the velocity were larger: 15 km in the horizontal
and 1 km in the vertical direction. For the basement (layer 6),
longer covariance ranges were used to estimate a very smooth
velocity field — a horizontal range of 20 km and a vertical
range of 2 km. The pseudo-interface marking sill reflectors
was characterized using a 3-km covariance range, which is co-
herent with the size of sill reflectors in the stacked section
and the fact that this interface is well illuminated by reflecting
rays. The basement interface is modeled with a range of 12 km
to estimate a very smooth surface because only the last data
phase reaches this interface, and ray density is much lower
than for other interfaces.

For convenience, we sometimes present uncertainties in dif-
ferent standard-deviation criteria. In Figure 4a, we present
three standard deviations (3-sigma criterion); in figures dis-
cussed later, we use one standard deviation (1-sigma crite-
rion). Standard deviations mark probabilities (confidence in-
tervals) of 0.682, 0.954, and 0.997 for the 1, 2, and 3-sigma cri-
teria, correspondingly. Hence, the 1-sigma criterion should be
regarded as a soft boundary, and the 3-sigma criterion as a
hard boundary.

TOMOGRAPHY RESULTS

Inversion proceeds by simultaneous adjustment of the ve-
locity field and the depth of the interfaces between layers to
improve the data fit, using the prior model as the initial model.
The following three steps were used to simplify the inversion:
first, the velocities and interface depths for the three upper
layers were jointly inverted using the traveltime data of the
three earlier phases; second, with these shallower layers fixed,
we inverted the traveltime data of the remaining four phases
to jointly estimate the velocities for layers 4, 5, and 6, the
depths for the sill, and the basement interface; third, we iter-
ated the inversion for additional adjustment of our most com-
plex interface, the sill pseudo-interface, keeping the other pa-
rameters fixed. The overall data fit improved about eight times
during the inversion, from 9.3 average datum chi-squared mis-
fit for the initial model to 1.2 for the final model, all data
phases included.

Figure 4b shows the final model. Compared with the prior
model (Figure 4a), the final model shows significant spatial
heterogeneities in the velocity and more detailed structures
in the shapes of all the interfaces. For the three upper sedi-
mentary layers, the velocities are slower than prior velocities,
and the interfaces are shallower. The fourth interface is more
clearly defined, and the basement proves to have a marked
structure that we interpret as a large basement block. Com-
pared with the velocity model derived from conventional ve-
locity analysis (Figure 2b), the final model is smoother. Het-
erogeneities in the three shallower layers are particularly sim-
ilar across these two models (Figures 2b and 4b); for example,
the velocity inversion at the top of the second sedimentary

layer between the coordinates of 50 and 60 km. However,
there is significant difference for layers below the third inter-
face, where velocities obtained through velocity analysis are
less reliable because of the complex geometry of the sill reflec-
tors and the poor constraints below the sills. Tomographic re-
sults show slower velocities in layers above and below the sills
than corresponding velocities obtained through semblance ve-
locity analysis.

Ray tracing demonstrates that the data provide significant
ray coverage down to 7–8 km depth. Figure 5 shows rays
traced for the different data phases used in the inversion and
how these phases transmit through the model at different
depths. The structure beneath approximately 5 km depth is
constrained by long-offset arrivals alone, highlighting the rel-
evance of the long-offset seismic information in construction
of the deeper part of the model. In particular, the longest off-
set refracted arrival shows significant variation in arrival time
along the profile, allowing an estimation of the deep basement
structure.

The seismic velocities in the optimal model obtained with
the inversion honor the information on spatial continuity as
well as the statistics of the mean values. Figure 6 shows cross-
plots of the estimated velocities versus depths below the sea
bottom corresponding to the posterior model (Figure 4b). The
central line in the figure indicates the expected values of the
velocity given in the geostatistical model; velocities in the geo-
statistical prior model (Figure 4a) correspond to this central
line. It is important to note that the inversion adjusted the
calculated traveltimes while keeping velocities well within the
statistics provided as prior information.

We evaluate the confidence on the estimated velocity model
by calculating the uncertainties (Figure 7a). The posterior un-
certainties are naturally heterogeneous within the section be-
cause of variations in ray coverage. Certainty increases toward
the center of the section. To the sides of the section, the pos-
terior velocity uncertainties tend toward the prior velocity un-
certainties, as expected.

Figure 5. Rays and traveltimes in the inverted velocity-
structural model for two example-shot super-gathers (shots at
40.5 km and 61.5 km).



R40 Bosch et al.

As this methodology combines geostatistical prior informa-
tion and geophysical information, it is important to identify
the relative influence of each type of information on the
different features of the estimated model. Figure 7b shows
the relative influence of geophysical information and the prior
model on the estimated velocities of the model presented in
Figure 4b. The influence of the geophysical information is
shown to be larger in areas of better ray coverage and neg-
ligible at the sides of the section, as expected. As explained
before, data and prior information influences add to unity;
hence, wherever the influence of data in the estimation is

Figure 6. Crossplots of the estimated seismic velocities (dots)
versus depth from the seafloor in (a) layers 1, 2, and 3, and
(b) layers 4 and 5, showing deviations from the central values
provided as prior information (solid line). Dotted lines show
one standard deviation from the central values used to con-
strain the velocities in the prior statistics.

small, the influence of the prior information is large, and vice
versa, so that the two influences complement each other.

Figure 8a shows posterior and prior uncertainty bands (one
standard deviation) for interface depths, illustrating the mod-
ification of the expected value (center of the bands) and the
reduction of the posterior uncertainty caused by the new infor-
mation incorporated by the geophysical data. Figure 8b shows
the relative influence of geophysical information and prior in-
formation on the estimation of interface depths. The plots in-
dicate that the interfaces are generally well constrained by the
traveltime data, except at the sides of the section. Shallower
interfaces are better constrained by data than deeper inter-
faces. This is a reasonable result because (1) deeper interfaces
are illuminated by fewer rays, and (2) the longer the ray, the
greater the influence of the velocity field on the traveltime and
the more important the velocity-interface depth trade-off.

A comparison between the influences of geophysical data
and posterior uncertainties on interfaces and velocities shows

Figure 7. (a) Plot of the posterior uncertainties (one standard
deviation) associated with the estimated velocities. Values to
the side of the section equal the prior velocity uncertainty of
0.2 km/s for the first three layers, 0.3 km/s for the layers above
and below the sills, and 0.1 km/s for the basement velocities.
(b) Plot of the impact of traveltime data on the estimated ve-
locities. Impact of the prior information is the complement to
unity at each location.
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that the impact of data is generally greater on the depths
of interfaces than on velocities; this is because, within the
framework defined by the prior standard deviation for ve-
locities and depths, the effect on traveltimes is larger for an
interface-depth variation than for an equally probable veloc-
ity variation. The same conclusion has been reached in pre-
vious work (e.g., Rossi et al., 2001) on seismic tomography
resolution.

The final velocity field complies with the traveltime infor-
mation — short and long offsets — and the geostatistical in-
formation. We use the velocities estimated with the tomogra-
phy (Figure 4b) to poststack depth migrate the seismic data
(Figure 4c, overlaid with the estimated interface positions).
In the shallow part, both the migrated section and the tomo-
graphic model delineate the three major upper sedimentary
layers and the system of sills. Figure 4c shows the sill reflec-
tions between 3 and 6 km depth, and it is interesting to note
the coincidence of the migrated and tomographic positions
for many of the sills. We highlighted before that the pseudo-
interface represented in the model marked some sill reflec-
tions that are correctly positioned here. Other sill reflectors
are positioned shallower or deeper, in some cases forming
a horizontally branched Christmas-tree-type structure; these
sills were not represented in the model or in the data used in
the inversion.

The effect of the improved velocities on the seismic image
is significant, particularly for events beneath the three upper-

Figure 8. (a) Plot of the one standard deviation uncertainty
band for interface depths associated with the prior and poste-
rior models. (b) Plot of the impact of traveltime data and prior
information on the estimated interface depths.

Figure 9. Comparison between the poststack depth-migrated
section using (a) the velocity field derived from stacking veloc-
ities and (b) using the inverted tomographic velocity model.
All other processing steps were identical for the two sections.
Note over-migration of the sills shown in (a) and better reflec-
tor coherence in (b).

most layers. Comparing Figures 2a and 4c, we see corrections
in the positions of sill reflectors over several hundred meters,
and the image underneath the sills also has improved. A de-
tail is shown in Figure 9, where complex reflectors beneath
the sills were clearly over-migrated with the stacking velocity
model (Figure 9a) and better imaged with the velocity model
obtained through tomographic inversion (Figure 9b).

The basement structure in the model was estimated during
the traveltime inversion, but it cannot be seen in the stacked
profile, which is dominated by multiples below the system of
sills. To model the basement, we used a first-arrival diving
phase arriving at long offset (Figures 3 and 5) with particu-
larly low amplitude, which is difficult to map into a zero-offset
section using a conventional stacking or migration procedure.

DISCUSSION

It is useful to highlight differences between our approach
of traveltime tomography and the common approach used in
geostatistical inversion at reservoir level constrained by seis-
mic wave-form data. In reservoirs, the objective is to simulate
true scale heterogeneities of porosity and permeability; hence,
covariance ranges should correspond to the actual medium
characterization, and model regularization should not be con-
sidered. Also, in reservoir inversion the formulation may be
done in either the time domain or the depth domain (if a
good velocity model is already available). In the traveltime in-
version shown here, covariance functions are defined accord-
ingly, with a smoothing criterion. This approach can be used to
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estimate the velocity field in areas without adequate ray cover-
age by interpolating between rays and by averaging velocities
within Fresnel radius volumes, thereby improving the inver-
sion results. Note that the goal of traveltime tomography is to
estimate a smooth velocity model for migration or to provide
a starting velocity model for wave-form inversion.

Another point to analyze is the limitations of the informa-
tion provided by our likelihood term, equation 3, which is
based on misfit evaluation of the traveltimes for several se-
lected seismic phases. As integrals of the slowness along the
raypaths, traveltimes in common seismic-acquisition geome-
tries do not contain the short seismic-wavelength information
on the medium (Jannane et al., 1989; Kosloff and Sudman,
2002). Also, the modeling component g(m) of the likelihood
term is approximate, because ray-tracing traveltimes are an
infinite-frequency approximation of wave traveltimes, so the
slowness average in Fresnel volumes is not accounted for in
the likelihood term. For this reason, it is useful to include the
criterion on resolution capabilities of the technique into the
prior statistical model, equation 2, by the nondiagonal terms
of the covariance matrix.

There are limitations intrinsic to the optimization approach
employed here, as well as limitations of the resolution and un-
certainty analysis presented. If the posterior density is mul-
timodal, convergence to a global maximum of the posterior
density is not guaranteed. Also, the resolution and uncertainty
analysis reflects the local statistics around a particular mode of
the solution, rather than global statistics. However, the statis-
tical inversion described here is more robust in this respect
than conventional geophysical inversion that does not incor-
porate prior information. Prior information, which we model
as a Gaussian density, constrains the model space, making the
posterior density more regular. In addition to the quality of
the prior information, a second aspect that contributes to reg-
ularity of the posterior density is the association of observed
traveltime phases with particular ray phases in the model.
This problem is more linear than the first-arrival traveltime
problem, in which different ray phases are involved but not
separated.

The validity of the Gaussian approximation of the poste-
rior density used for the resolution and uncertainty analysis
is related to the distance between the prior and optimal mod-
els. If we have a good prior model that significantly constrains
the model space, and the optimal model obtained from the
inversion is close to the prior model in such a way that de-
viations from a linear approximation of traveltimes are not
strong, then the posterior density would be close to Gaussian.
This is an advantage over conventional geophysical inversion
since this method allows the combination of prior and geo-
physical information.

Monte Carlo methods for sampling the posterior density are
not subjected to the limitations discussed above; therefore,
they can be used for accurate computation of global poste-
rior statistics and mode analysis. However, the computation
times for Monte Carlo techniques are commonly much larger
than those corresponding to optimization techniques, which
can be a major difficulty for implementation of Monte Carlo
approaches and their convergence to the posterior statistics.
In particular, raypath and traveltime calculations in a hetero-
geneous medium require significant computation time, of the
order of minutes on a workstation for the application shown in

the preceding sections. Considering the number of model pa-
rameters involved, Monte Carlo sampling would require over
100 000 evaluations of the forward problem. Instead, our op-
timization approach requires only a few iterations of the for-
ward problem solution to calculate the optimal model.

Finally, an interesting capability of the method presented
here can be exploited if well logs are available along the line.
In this case, the hard information of the well log can be incor-
porated into the prior model by reducing the model variance
along the intersection of the model with the well. This guar-
antees that the result of the inversion will conform to the well
logs as well as optimize the overall model to fit the traveltime
data.

CONCLUSIONS

We present a methodology that combines geostatistical
and geophysical information in the estimation of a seismic
velocity-structural model. We describe spatially correlated ve-
locities and interfaces statistically with a common multivariate
Gaussian probability model, covariance functions, and prior
expected values. Several types of information are incorpo-
rated into the prior statistical model: (1) the trend and vari-
ability of compressional velocities with depth in crossplots of
logged well data from a nearby area, and (2) depths of major
reflectors obtained from a preliminary processing of the seis-
mic data. Covariance functions are defined to regularize the
model according to decreasing tomographic resolution with
depth of the layer. We also calculate posterior confidence in-
tervals for the estimated interface depths and velocities and
develop a measure for the relative impacts of the geophysical
data and the prior information in the estimation.

Using this approach to traveltime tomography, we obtain an
optimal two-dimensional velocity-structure model for a sec-
tion along a seismic line in the northeast Atlantic margin area,
improving the velocity estimates in comparison to the velocity
model obtained from stacking velocities. The reflected seis-
mic phases arriving at conventional offsets (up to 6 km) con-
tributed information to the upper part of the model down to
4 km depth. Long-offset (up to 18 km) diving-wave phases
constrained velocities for depths down to 8 km, including in-
formation on basement structure that cannot be identified in
the stacked seismic image generated by conventional process-
ing. Our optimal model explains the traveltime arrivals and,
at the same time, honors the prior geostatistics provided for
layer seismic velocities and layer interfaces.
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