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ABSTRACT

The integration of information for the inference of earth structure and properties can be treated in a probabilistic
framework by considering a posterior probability density function (PDF) that combines the information from a new
set of observations and a prior PDF. To formulate the posterior PDF in the context of multiple datasets, the data
likelihood functions are factorized assuming independence of uncertainties for data originating across different
surveys. A realistic description of the earth medium requires the modelization of several properties and other struc-
tural parameters, which relate to each other according to dependency and independency notions. Thus, conditional
probabilities across model components also factorize. The relationships across model components can be described
via a direct acyclic graph. The basic rules for factorization of the posterior PDF are easily obtained from the graph
organization. Once the posterior probability has been formulated, realizations can be obtained following a sampling
approach or searching for a maximum posterior probability earth medium configuration. In the first case, sampling
algorithms will adapt to the factorized structure of the posterior PDF. In the second case, iterative second- or first-
order approximations of the objective function conduce to the solution of a system of equations for the model update.

3.1. INTRODUCTION considered too large to be workable. Nevertheless, given
the goal of a specific study and the available informa-
The appraisal of solid Earth structure and properties tion, a relevant set of such components and relation-
requires modeling the medium’s heterogeneous compo-  ships can be retained for modeling, while the rest is
sition and lithotypes, the morphology of geological neglected. The appropriate selection conforms to the
bodies, pore fluids, fractures, knowledge, and informa-  pertinence of the model component to the phenome-
tion that are linked at various scales, and the medium’s  non observed and the goal of the study.
physical response to field measurements. This implies Integration of multiple data, information, and knowl-
the description of various types of (1) medium properties edge has been considered a key issue in natural sciences,
and structural parameters, (2) observations provided and particularly in Earth sciences. The relevant informa-
by surveys, well-logs, and rock sample studies, and tion is heterogeneous in its nature (properties, objects,
(3) knowledge to establish relationships across the phenomena, scales) and available at diverse treatment
model properties and observations. The full multiplicity  Jevels: The data are the raw support of the information
of components and intervening relationships could be  (processed and interpreted data), which is understood
in terms of knowledge (a successful theory). With the
Applied Physics Department, Engineering Faculty, Universidad ~ advent of larger computational possibilities in the past
Central de Venezuela, Caracas, Venezuela decades, the quantitative treatment of multicomponent
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complex models and observations is in progress to provide
(a) more realism to the description of the Earth media
and (b) more accuracy and precision to the estimates
[Linde et al., 2006a; Bosch et al., 2010; Torres-Verdin et al.,
2012]. Examples of joint inversion of multiple geophysical
datasets, in various Earth sciences inference contexts, are
described in the works by Lines et al. [1988], Haber and
Oldenburg [1997], Bosch [1999], Bosch et al. [2001,
2004], Tiberi et al. [2003], Gallardo et al. [2003], Gallardo
and Meju [2004], Linde et al. [2006b], Guillen et al.
[2007], Khan et al.[2007], Alpak et al. [2008], Doetsch et al.
[2010], Buland and Kolbjomsen [2012], and Chen and
Hoversten [2012].

The present work focuses on the formulation of inverse
problems in Earth sciences, for the case of models con-
figured with multiple spatially distributed properties,
subjected to different types of physical observations and/
or embodying multiple relationships across properties
and observations. The nature of the formulation and
approaches to solve inverse problems is not different for
this scenario. The issues to solve consists in (1) how to
compose relationships and information across the model
components and (2) how to draw from the composed
information realizations of the joint model, or maximum
posterior probability model configurations, according to
the solution approach followed. To explain these issues,
I will not follow a rigorous deductive path. I will mention
the basic principles and illustrate their formulation for
various common examples of inferential interest in earth
sciences.

The first section of this chapter describes the formula-
tion of posterior probability densities for complex mod-
els, for the case where their components are structured
in hierarchical layers, and for multiple sets of data. The
second section unfolds the structure of the posterior
probability density for less structured models, via the
support of direct acyclic graphs [ Pearl, 1986; Thulasiraman
and Swamy, 1992] that describe the relations across
the model components and datasets. The third section
describes the stochastic approach to the solution of the
inverse problem by sampling the posterior density with
Markov Chains, following its factor structure. The fourth
section describes the optimization approach to the solu-
tion of the inverse problem, which consists of searching
for the model configuration that maximizes the posterior
density. Finally, the discussion and conclusion sections
close the chapter.

3.2. MULTIPLE PHYSICAL OBSERVATIONS
AND MODEL COMPONENTS

The general formulation of inverse problems is out-
lined here in a probabilistic framework, within the scope
of Bayesian inference. The term Bayesian refers to the

interpretation of probabilities as a description of the
information, knowledge, or uncertainty on parameter
spaces that support a model of a natural object or phe-
nomenon. A state of information about the modeled
object is described by the probability density function
(PDF) defined over the model parameter space or, equiv-
alently, by the cumulative distribution function (CDF).The
variables in the parameter space are considered random
as they take different values each time they are evaluated
and represent the corresponding state of information.
Each time the model parameters are evaluated, their out-
come is drawn in proportion to the corresponding PDF
realizing a different configuration of the modeled earth
medium. The discussion section expands the analysis of
the relationship between the model parameter space and
the modeled object space.

The common formulation of inverse problems consid-
ers a prior state of information, a set of observations
related with the modeled object, and the improved poste-
rior state of information resulting from the combination
of the prior and the new information provided by the
data interpretation. The posterior probability density is
given by

o(m)=cp(m)Ly,, (m), (3.1
where m is a multivariate random variable in the model
parameter space, ¢ is a normalization constant, p (m)
is the prior PDF, and L, (m) is the data likelihood
function, which embodies the new information provided
by the observations. Normalization constants will be
included in the following equations of the posterior PDF
but not further identified.

As we know, observations are not commonly made
directly on the model parameters, but in terms of addi-
tional related parameters that we refer to as data. The
knowledge of the relationship between the data and the
model parameters, including the associated uncertainties,
provides the means to transform the former into informa-
tion of the latter—that is, interpret the data in terms of
the modeled object information. The formal derivation
of the data likelihood function in (3.1) depends on the
formulation of the relationship between the model and
data spaces and the associated uncertainties. In the gen-
eral case [Turantola, 2005], the information provided by
the theory and the observations are modeled indepen-
dently and combined in a joint model-data space. The
data likelihood function is calculated as a marginal non-
normalized probability in the model parameter space,

Ldata (m) :-[elheory (d I m)pobs (d)dd (32)

Above, d are the true data parameters here considered
with uniform homogeneous probability density. It is the
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data that would have been observed in the absence of
observational and data processing errors. The probability
density p_, (d) describes the information on the true data
provided by the observation experience, d =d_, +Ad,,
via the corresponding observed data d , and the associ-
ated uncertainties Ad_, . The conditional probability den-
Sity 0oy (d|m) describes the data-model relationship,
based on theoretical or empirical knowledge, including
the data modeling uncertainties. The homogeneous
probability density [Mosegaard, 2011; Mosegaard and
Tarantola, 2002; Tarantola, 2005] describes the state of
null information about the parameter. The homogeneous
PDF of the data should be included in the denominator
of the integrand in (3.2), in the case where it is not mod-
eled as uniform (constant).

It is also common to model the observational uncertain-
ties within the data—model conditional, instead of provid-
ing the independent observational PDF, p . (d), present in
the general expression (3.2). In this case the data likelihood
function can be formulated straight forwardly as

Ldala (m): ®1heory (dobs | m)’ (33)

where d_ _are the observed data. Both formulations are
equivalent if uncertainties are appropriately modeled.
The reader is referred to the work by Tarantola [2005] for
a general derivation of the above expressions from the
theory of combination of information states, generalized
for parameters with nonuniform homogeneous probability
densities. Equations (3.1)—(3.3) are the common basis for
statistical inference, although derived from different the-
oretical approaches.

3.2.1. Likelihood Function Factorization

Let us now consider a model with various inner compo-
nents of model parameters,m={m , m,,...,m, }, influenced
by various types of data observations, d={d,.d,,....d,},
as required in integrated data modeling. The inner com-
ponents of the model parameters, m,, could correspond
to different property fields, the same property fields at dif-
ferent scales, geometric boundaries of geological objects,
and other subsets of the model parameters specific case.
Each of these multiple components is commonly of high
dimensionality, such as a property field distributed on a
spatial grid. The data components are partitioned accord-
ing to different observational phenomenon (gravity, seismic,
electric), derived data (seismic travel times, amplitudes,
frequencies), or field surveys. We can decompose the
observational PDF in the joint data space by the product
of marginals,

pobs (d) = pobsN (dN)pobsN—l (dN—l ) . 'pobs] (dl)

3.4
ZHpobsn (d"), ( )

under the assumption of independent observational data
uncertainties across the surveys. Recall that the observa-
tional PDF, p  (d), only embodies information about the
measurement process and does not anticipate the posterior
information in data space—that is, as present in the
posterior marginal of (3.1). The assumption is well justi-
fied for different surveys, which commonly use different
instrumentation and field teams, and for different obser-
vational phenomenon (rock samples, well-logs, seismic
experiment, gravity measurement). Nevertheless, in a
strict sense, Eq. (3.4) is an approximation, as measure-
ments across different surveys may be affected by com-
monly used information (a common digital elevation
model, seasonal terrain conditions, or other factors). We
assume herein that possible correlated factors are minor
compared with the total observational uncertainty. The
above decomposition of the observational PDF can in
some cases be applied to data components derived from
the same survey. As an example, various types of partial
data can be obtained from seismic surveys, such as phase
travel times, reflection amplitudes, and frequency con-
tent, which are commonly interpreted independently
assuming unrelated uncertainties.

Similarly, the theoretical conditional probability is
composed by the product of conditional marginals,

®Ihe0ry (d I m) :®lheoryN (dN | m)®lheoryN—1 (dN—l Im)

" (3.5)
®thcoryl (dl | m) = H®thcoryn (dn | m)’

when assuming independence of the modeling uncertain-
ties. Modeling of different phenomenon (seismic, electric,
gravity) and different components of the same phenom-
enon (seismic travel times, amplitude reflections, fre-
quency decay) are based on different types of theoretical
knowledge and are likely to have independent modeling
uncertainties, thereby supporting the stated assumption.
Again, the expression is an approximation that neglects
possible related factors emerging from common mode-
ling choices (e.g., common spatial property discretization
for instance).

By substitution of (3.4) and (3.5) in (3.2) followed by
integration, we obtain the joint likelihood function as the
product of the data likelihood functions for each of the
data components,

Ldzlta (m) = Ldatal (m)Lduta 2 (m) . 'LdataN (m) = HLdutan (m)’
(3.6)

with
Ldalan (m) :J.®theoryn (dn | m)pobsn (dn )ddn (37)

A similar result is obtained by substitution of (3.5) in
(3.3). The factorization of the joint data likelihood
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according to the data subsets is equivalent to the addition
of data objective function terms in the framework of
deterministic solutions to the inverse problem, as will be
explained in the corresponding section of this chapter.

3.2.2. Prior PDF Factorization

At the multiple components model, the prior PDF on
the model parameters can be decomposed by following
the rule of conditional probabilities:

p(m)=p(my |m;_,...m) 18
xp(mg |m, ,,...m)..p(m). (38)

Given the knowledge on the relationships across the
model components, some of these conditionals could be
simplified. Causal or empirical statistical relationships
impose the relevant dependencies, and independencies,
enforcing a hierarchy to the model components. In fig-
ure 3.1, we present a common scheme for a multicompo-
nent model with multiple data observations, structured in
two layers of properties: primary, m ; ={m,,m, ...,m,, },
and secondary, m, ={m,  m,  ..m;}, and one
observed data layer. In this setting, the secondary proper-
ties are dependent on the primary properties, while the
observed data are dependent on the secondary properties.
The data are not directly (explicitly) dependent on the

primary properties. With the imposed hierarchy and
model layers, the prior information can be satisfactorily
decomposed by

p(m)=p(m Im,;)p(m,) (3.9)
=p(my,,...my [m,,...m)p(m,,.. . m),

and the posterior PDF for the situation in Figure 3.1
takes the form

G(m) :Cp(mM+l’mK |m,’\/[?"-sm])p(ml‘/[,...,ml)

X Ly (mM+1 )La’amz (mM+2)Ldam3 (mM+27mK )7
(3.10)

with the factorization of the likelihood function as previ-
ously explained and including the explicit dependency of
each data component on the corresponding secondary
model component as indicated in Figure 3.1. It is com-
mon to define an objective function proportional to the
logarithm of the posterior PDF, as will be described in
the optimization approach section of this chapter. The
factorization of the posterior PDF, shown in expression
(3.10), is in this setting equivalent to the addition of terms
in the objective function, each one corresponding to a
particular factor of the posterior PDF.

In Figure 3.1, I have drawn separate data component
boxes to indicate independence across the data

Layer 1 Layer 2 Layer 3
m, my, 1 d
m; My, 2

d,
my my ds

Primary model

Secondary model

Observed data, d

parameters, m

. parameters, Mg

o(m)=c p(Myy,q, My I My, o My) p(Myy, oy M) Lgaga 1 (Mpy41) Laata 2 (Mpy42) Laata 3 (M2, My)

Figure 3.1 Random variables organized in hierarchical layers describing model parameters and data in an infer-
ence problem. Bold arrows indicate dependencies across random variables and its modeling sense. Variables in
common blocks are modeled jointly. Gray boxes indicate model parameters describing Earth medium properties
and structure, while white boxes indicate parameters describing experimental observations and measurements.
The composition of the posterior PDF is shown at the bottom as a product of data likelihood functions, priors, and

conditional PDFs.
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components with respect to the observational and mod-
eling data uncertainties. The juxtaposition of boxes
shown for model components at the primary and second-
ary model layers indicate retention of dependencies
across these components in the prior, p(m,,...,m), and
conditional, p(m,,,, m, |m,,,...,m,); these properties
should be modeled jointly considering their cross-
relations, and spatial relations could be accounted for.

3.2.3. Examples in Common Inferential Settings

When an inferential problem is analyzed, the first step
is to define the model components, their internal relations,
and their data. This should be done by an expert, or a
team of experts, in order to ensure the pertinence of the
model and data to satisfy the goal of the inference. The
network design introduced above involves retaining
model components, their relevant relations, their sets of
data, and their relations with the model components.
Dependencies and independencies need to be defined.

In this section, I will illustrate the structure of common
inferential problems in Earth sciences and the appropriate

formulation of the posterior PDF. In Figures 3.2 and 3.3,
I show layered multicomponent models that are useful in
inverse problems at local, regional and planetary scales.
In Figure 3.2 the setting for an integrated description of
a siliciclastic sedimentary medium is depicted by four
parameter layers: three model parameter layers and one
data layer.

In sedimentary basins, the spatial statistical characteris-
tics of the medium properties is at large scope heterogene-
ous, whereas within the same formation or units the
statistics can be analyzed as spatially homogeneous. Thus,
for appropriate statistical modeling, a primary space
describing the formation delineation and their sequence is
needed. This information can be parameterized by the
formation category sequence (formation identification)
and a geometrical framework delimiting the statistically
homogeneous medium regions by the corresponding hori-
zons. Prior information on these primary parameters,

ormations 18 Usually obtained via interpreted seismic hori-
zons, well-log data, and geological knowledge of the area.

Within formations, several types of lithology can
be present (carbonates, igneous intrusions, siliciclastic

Layer 1 Layer 2 Layer 3 Layer 4
S " Parameters of the .
" rock physics '
/" Seismic . model calibrated
interpretation, well | ~._to well data g
*._ info and geolo -
N 9 9y dP pre-stack Los | 2
| | / time Vg
g
Myshale : Mp velocity -
v 5
Mporizon Statistical Rock physics Pg
“‘\J modeling 8
> Mporosity Ms velocity T Aampiitude <08
N Geophysical 3
m S/ modeling 2
‘category ‘ ) 3
i Q
o
m f . N
saturation mdensny ]
. ) d . ©
Parameters of the gravity < .%’
/  geostatistical model o B g
chelllrzctterlzed from ‘Seismic source. <
we ata _wavelets o
Primary model Secondary model Tertiary model Observed
parameters, My mation parameters, m,,q, parameters, Myp s data, d

U(m):/)(mformation) /)(mvshale' mporosity‘ Msaturation | mformation) /’(mP velocity» mg velocity» mdensity I Myshales mporosity‘ msaturation)

X Lamplitude (mP velocity» mg velocity» mdensity)

LP pre-stack time (mP velocity) Lgravity (mdensity)

Figure 3.2 Example of model parameter structure in Earth science inference settings: the case of siliciclastic sedi-
mentary basin description based on seismic reflection amplitudes, seismic pre-stack P arrival times and gravity
observations. Dependencies across random variables and their hierarchies are shown by bold arrows. Nonrandom
parameters required for the conditionals, priors, and likelihoods are indicated in dashed ellipses. Bold boxes
show the random parameters for description of the earth medium (gray) and observations (white). The correspond-

ing structure of the posterior PDF is shown as the bottom.
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Figure 3.3 Example of model parameter structure in earth science inference settings: (a) Lithotype geobody
description at crustal regional scale based on gravity, magnetic, and seismic travel-time data. (b) Planet scale
composition and temperature description constrained by seismic travel times, gravity data, and the inertia
moment. Symbols are the same as in previous figures. The corresponding structure of the posterior PDF is shown
at the bottom of each figure.
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sedimentary rocks). We will consider here the case of
siliciclastic sedimentary rocks, where lithology can be
described by the shale volume fraction. Another second-
ary parameter is the total porosity that influences the
elastic medium properties and density, and finally the
pore fluid volume fraction (saturation) is important in
systems with two or more fluids. Conditioned to the for-
mation and well-log information, geostatistical parame-
ters describing the rock matrix and fluid properties are
commonly characterized to model this secondary layer of
parameters, m, . ={m ., M o> M0 ) 10 this case
we refer to the use of well data to calibrate spatially
homogeneous property statistics (means, covariances).
An example with spatially localized well-log information
will be considered in the next section of this chapter.

According to the rock matrix and fluid configurations,
rock physical models are used to calculate properties that
characterize the mechanical behavior of the medium, like
compressional seismic velocity and shear seismic velocity as
well as the mass density, m, ={Mp i > M etocity » Maensity |-
This set of parameters represents the third layer of model
parameters.

Finally, Figure 3.2 includes in the fourth layer data
from common geophysical surveys that provide informa-
tion to interpret sedimentary basin stratification, depth,
and structure. Interpretation of the seismic data can be in
various ways, either in full wave form (full data) or by
separating data components. It is common to interpret in
a separate manner the pre-stack P-wave travel time for
major well-identified reflectors and the reflection ampli-
tudes after migration (spatial repositioning of the seismic
data). We conform the data parameter layer in this exam-
ple with these seismic partial data and the gravity data,
d :{damplilude, dere-slack time, dgravily }

Notice that seismic data subsets of different nature
contribute at the right-hand side of the figure to the
observed data and at the left-hand side to the prior infor-
mation. The prior information is based on interpreted
horizons in migrated and stacked data, whereas the data
to be modeled at the right-hand side correspond to
(1) seismic reflection amplitudes and (2) travel times of
major events in pre-stack domain. There is no redun-
dancy or cyclicity in the problem definition.

According to the layered model and the data relations
in Figure 3.2, and applying the previous concepts for
composition of the posterior density, we have

o (m ) =cp (mformation ) Y (m vshale mporosity ,m saturation | m formation )
xp ( m P velocity > mSve]oeily b mdensily | m vshale > mpomsily ,m saturation )

xL L

‘amplitude (m P velocity » mSve]ucity H mdensily )

X ( m Pvelocity ) Lgravily (mdensily ) .

P pre-stack time

(3.11)

where, p(m, . ) is the prior PDF on the formation
sequence and delimiting horizon boundaries, p(m .,
M Muraion | Mpormation) 18 the PDF of the rock matrix
and fluid parameters conditioned by the formation, and
p(mPvelocily’mSvelocity’mdeusily |mvshale’mporosity’msaturation) is the
PDF of the physical rock properties conditioned by the
rock matrix and fluid parameters. The likelihood func-
tions are identified according to the set of observations
and the related physical model argument. Figure 3.2 also
shows some of the information needed for the definition
of the priors, conditionals, and likelihoods, which is
employed in the modeling as nonrandom parameters: the
seismic source wavelets, the parameters of the rock phys-
ics model, and parameters of the conditional geostatisti-
cal models. These parameters will not vary in the inference
and are previously estimated from the analysis of the data
and additional information.

Similar components to the example shown in Figure 3.2
can be found in the papers by Bosch [2004], Larsen et al.
[2006], Bosch et al. [2007], Bosch et al. [2009], Grana and
Della Rosa [2010], and Grana et al. [2012] with details on
how to model the specific prior, conditionals, and obser-
vational PDFs.

Considering now a larger scale, Figure 3.3a shows a set-
ting for the inference of the geological structure at the
crust, similar to the one employed by Bosch [1999], Bosch
et al. [2001, 2004] and Guillen et al. [2007]. In this case, the
primary frame is given by the description of the geometry
of major lithotype geobody boundaries (e.g., gabbro, gran-
ite, sediments). The physical medium properties are mod-
eled conditioned to the geobody lithotype by an empirical
joint physical property density that is derived based on
laboratory rock measurements for each lithotype. Finally,
the observed data corresponds to common survey observa-
tions that provide information at large regional/crustal
scales: gravity, magnetic, seismic refraction, and/or earth-
quake travel times. The resulting posterior density accord-
ing to the model and data structure is given in the figure.

A similar parameter structure, shown in Figure 3.3b,
was used at global satellite and planetary scale by Khan
et al. [2006] to infer the thermal and compositional struc-
ture of the moon from available data on P-wave travel
times, gravity observations, and inertia moment. In this
case the primary parameters were the temperature and
composition, and the secondary parameters were the seis-
mic compressional velocity and mass density. A petrologi-
cal model, based on computations of mineral phase
proportions in the mantle, was used for the prediction of
the mass density and seismic velocity conditioned to the
mantle composition and temperature. The same approach
was applied, with differences in the constraining geophysi-
cal data, to infer the composition and temperature of
Mars [Khan and Connolly, 2008] and the Earth’s mantle
[Khan et al., 2008].
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3.2.4. The Role of Rock Physics and Dynamic Models
as Coupling Information

In the examples presented above, an important role is
given to relationships across model components, which
are described by inner model conditional PDFs. Multiple
properties defined at the same points are naturally linked.
In solid Earth models, relationships are imposed by rock
physics, but also geology, sedimentology, mineralogy, and
chemistry can provide relational information depending
on the setting.

Approaches to model the conditionals between the phys-
ical rock properties (e.g., elastic moduli, seismic velocities,
mass density, viscosity, electrical resistivity) from basic rock
frame constitution and fluids (e.g., matrix lithology, poros-
ity, fluid types, and fractions) are multiple. I will refer below
to empirical and rock physics model-based approaches.

An empirical approach to the formulation of the condi-
tional of physical medium parameters to lithotype cate-
gories can be illustrated, for example, by the work of Bosch
[1999] and Bosch et al. [2001]. The characterization of the
mass density and magnetic susceptibility was based on
laboratory rock sample measurement data for each one of
the involved geobody lithotypes of the studied area. An
empirical spatial (geostatistical) simulation model was
elaborated for the conditional p(m g, » M cenipiticy | Miino )
by using mixtures of multivariate Gaussian functions.
The PDF for the mass density and magnetic susceptibility
in a node depended on the lithotype of the geobody (cat-
egorical variable) and the mass density and magnetic sus-
ceptibility values at the other nodes within the geobody,
according to the mentioned model. Because of the scar-
city of data in some applications, the covariance (or
equivalently semivariogram) ranges need to be assumed;
in the work by Bosch et al. [2001] it was based on the geo-
statistical characterization of similar areas from field
measurements [Bourne, 1993]. Additional examples of the
application of an empirical approach to formulate prob-
abilities of the physical rock properties, conditioned to
lithology and reservoir properties, are described in the
works by Mukerji et al. [2001], Larsen et al. [2006], and
Ulvmoen et al. [2010].

Relationships between the elastic moduli, mass density,
and other physical rock properties have been studied for
various types of rocks and Earth media, within the
domain of rock physics. Common models of rock physics
for relating acoustic and elastic properties to rock matrix
and fluid components are described in detail by Mavko
et al. [2003] and Hilterman [2001]. For sedimentary rocks,
and particularly for the most common siliciclastic sedi-
mentary rocks, a large set of modeling tools are available.
Predictive models for elastic and other physical proper-
ties for mantle material have also been studied. A second
type of approach, less dependent on a specific set of data

than the empirical approach, consists in using appropri-
ate rock physics models for the prediction of the physical
properties from rock matrix and fluid properties,

mphys = f(mmck ) +Am

phys - (3.12)
where, f(m_ ) is a rock physics function that models the
involved physical rock properties and Am are the devi-
ations from the prediction. It is important to mention
that no rock physics model has universal validity. Hence,
all rock physics models should be evaluated and cali-
brated against actual property data from the application
area. The statistics for the deviations Am _can be char-
acterized by comparing the rock physics model prediction
and property measurements for the area (usually well-log
or core data). The statistical model for the deviations,

p(Amy, ) =p(f(m, ) -m,, ) =p(my, Im,), G.13)

conduce straightforwardly to the conditional PDF for the
physical model parameters. In addition to the rock phys-
ics model deviations, measurement uncertainties could
also be accounted for in p(Amphys) when relevant.

Examples of the rock physics-based approach outlined
above for modeling the dependency of acoustic and elas-
tic properties from rock matrix and fluid properties are
described by Mavko and Mukerji [1998], Bosch [2004],
Bosch et al. [2007], Spikes et al. [2007], Bosch et al. [2009],
Grana et al. [2012], Suman and Mukerji[2013], and Grana
[2014] for modeling the dependency of acoustic and elas-
tic properties from rock matrix and fluid properties.

At the planetary scale, physical medium properties,
such as seismic velocities and density, are a function of
the mantle composition and temperature. The problem is
nonlinear due to mineral phase changes. Nevertheless, it
is fully tractable via petrophysical models, such as the one
described by Connolly [2005] that is based on the minimi-
zation of the free energy associated with the mixture of
mantle minerals. This approach was followed by Khan
et al. [2006] and Khan and Connolly [2008] to model petro-
physical conditionals for inferring the thermal and com-
positional configuration of the moon and Mars. Also,
Hacker et al. [2003] elaborated a model for the prediction
of the compressional velocities and mass density in the
Earth mantle.

When modeling phenomena evolving in time, dynamic
models are the natural link between the various time-
lapse observations or velocity observations. In the case of
the mantle description, flow equations can be useful to
link temperature fields and mantle kinematics. In the case
of time-lapse seismic in reservoirs under production,
fluid flow modeling can be also used as inner link between
the time-lapse configurations. Applications under various
approaches are shown in the papers by Huang [2001],
Mezgahni et al. [2004], and Dadashpour et al. [2009].
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In addition to rock physics and dynamic models, struc-
tural features such as the location of geologic boundaries
[Lines et al., 1988; Haber and Oldenburg, 1997; Bosch
et al., 2001; Gallardo et al., 2003; Guillen et al., 2007] or
the requirement of similar directions for property spatial
gradients [Gallardo and Meju, 2004; Doetsch et al., 2010]
are also used for model conditioning across medium
property fields.

3.3. GRAPHS AND POSTERIOR
PROBABILITY DENSITIES

As shown in the previous section, the information
about parameter components and dependencies are eas-
ily presented in graphical form, as in Figures 3.1-3.3,
facilitating a straightforward definition of the posterior
probability densities. So far we have presented examples
with hierarchical model parameters layers and a final
data layer: Priors are given for the first model layer, con-
ditionals at the intermediate model layers and data likeli-
hoods at the final layer. However, more heterogeneous
networks of model and data subspaces can be analyzed
for inference following the underlying principles.

A graphical structure known as direct acyclic graph
(DAG) [Thulasiraman and Swamy, 1992] is useful to
describe relationships across model parameters that are less
structured than a hierarchical sequence of model layers.

m, -
m;

\ m5
ms / Mg

d,

m, _ m,

mg

l \/

The DAG is defined by a set of nodes, which are here the
model and data components, and a set of directed arrows
that link the nodes, which will represent direct dependency
relationships. In the DAG, it is required that no closed
directed path exists in the graph. If a parameter subspace
m, points in the graph to a subspace m,, the latter is consid-
ered a descendant of the former, and the former an ascend-
ant of the latter. Acyclicity warrants that no node can be its
own descendant or ascendant; Figure 3.4 shows an exam-
ple of a DAG relating model and data components. Notice
that we have data that are dependent on different model
component generations and direct influences (arrows)
across model components separated by more than one
generation; data nodes do not have descendants. A given
DAG and the PDF defined over the joint parameter space
defines what is called a Bayesian network, sometimes also
called belief network or simply inference network [Pearl,
1986, 1994; Ben-Gal, 2007; Griffiths et al., 2008].

The same principles applied in (3.6) and (3.9) produce
the following rules for the factorization of the posterior
PDF over the DAG:

1. Each model node with no ascendants introduces a
prior PDF factor.

2. Each arrow across model nodes contributes with a
conditional PDF factor.

3. Each data node contributes with a likelihood func-
tion factor.

O

mg —_— d1

Ax

a(m)=p(my, My) p(M3) p(Ms, Mglmy, Mg) p(Mylmy) p(MzImy, M5, Mg) p(Mglms, mg)
x p(Mglmg, Mg) Lzt 1(Mg, Mg) Lyata 2 (Mg) Lyata 3 (Mg, My) Lyara 4 (M3)

Figure 3.4 Example of an inference network defined over a direct acyclic graph (DAG). Dependencies across
random variables are shown by bold arrows. The corresponding structure of the posterior PDF is shown at the
bottom of the figure. Model components within common boxes are jointly modeled. Gray boxes indicate model
parameters describing the earth medium properties and structure, while white boxes indicate model parameters

describing experimental observations and measurements.
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According to these rules, the posterior PDF for the
DAG in Figure 3.4 is

o(m)=cp(m; m,)p(m;)p(m;,mg|m, m,)
xp(m4 |ml)p(m7 |m4’m5’m6)p(m8 |m5»m6)
Xp(m9 |m3’m6)Ldatal (mS’m9)Lda‘a2 (m9)
% Ligias (Mym; ) Ly (M)
(3.14)

The sense of some of the DAG relations depends on
the modeling decisions made. When the relationships are
based on theoretical models, the nature of the theory
commonly imposes the sense of the direct (easier) mode-
ling, complying with a causality notion. Examples of
Bayesian model networks used for oil reservoir descrip-
tion, with illustration of the specific graph structure
defined, are described in the works by Eidsvik et al. [2004],

" Parameters of the
rock physics
model calibrated

/" Prior information on
rock parameter

Bosch et al. [2007], Rimstad et al. [2012] and Chen and
Hoversten [2012]. Examples of similar networks applied
to decision making can be found in the work by
Bhattacharjya and Mukerji [2006] and Martinelli et al.
[2013].

Figure 3.5 shows an application example of the infer-
ence with a DAG relational description across model and
data components, for sedimentary strata description. In
the setting of Figure 3.5, the formational random param-
eters of Figure 3.2 are simplified to be a known (known
horizons and formations in reflection seismic time) part
of the prior information. Additional data have been
included consisting of well-log observations in given loca-
tions (well paths) for the porosity, shale fraction, water
saturation, and elastic medium parameters (P-wave and
S-wave velocities and mass density). The seismic source
wavelet, considered a nonrandom parameter in Figure 3.3,
has been randomized in order to adjust the seismic source
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. seismic source
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g ~.. to well data |
. S e v
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Figure 3.5 Inference network for siliciclastic sedimentary basin description based on pre-stack seismic reflection
data, including the estimation of the source wavelet and well-log data priors on the medium properties. Symbols
are the same as in previous figures. The corresponding structure of the posterior PDF is shown at the bottom.
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wavelet within the inference process. With the relation-
ships shown in the figure, the posterior PDF is

o (m) ch(mrock )p<msnurce )p(mphys | m, . )
x Lamplitude (mphys ’msource )Lwell—logrock (mrock ) (3 : 1 5)
x L

‘well-log phys ( m phys ) b

where p(m_ ) is the prior information on the source
wavelet, usually obtained by preliminary well to seismic
tie, and p(m__) is the prior information on the rock
matrix and fluid parameters (total porosity, shale frac-
tion, and water saturation). The seismic amplitude likeli-
hood, L _ . . (m ), is now dependent on the
plitude "phys =~ “source N R
source wavelet in addition to the elastic medium param-
eters, and there are likelihood funct'%ons, L 10g rock (M o)
and Lo phys (M), corresponding to the well-log
measurements of the rock and physical properties at spe-
cific well-path locations. More details about the source

" Prior information .

wavelet inference are given by Bosch et al. [2007], and for
well-log data inclusion see Bosch et al. [2009].

Figure 3.6 shows another inference network defined
over a DAG. I am showing in this figure a network pro-
posal for the inference of mantle properties and dynam-
ics, by coupling seismic tomography, gravity, and plate
velocity observations. In this case, dynamic models for
the mantle and plates are part of the inner coupling of
the model components. Primary parameters are the min-
eralogical mantle composition, together with the temper-
ature and pressure. A descendant set of parameters are
the compressional seismic velocity, the shear velocity, the
mass density, and the viscosity, which should be modeled
by composing mineral fractions, temperature, and pres-
sure dependencies. Another set of descendant parameters
are the mantle dynamics given by stress and velocities,
dependent on the mantle configuration and physical
properties. Mantle velocity imposes anisotropy in the
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Figure 3.6 Example of a proposed inference network for mantle configuration coupling seismic tomography,
mantle flow, plate dynamics, and gravity data constraints. The corresponding structure of the posterior PDF is

shown at the bottom; compact notation m
Same symbols as in previous figures.

mantle’ phys’

m and m

have been used to abbreviate the expression.

dynamics



40 INTEGRATED IMAGING OF THE EARTH

propagation of seismic shear waves (birefringence
phenomenon), which is measurable from seismological
observations. Mantle velocities at the surface are also
related to the plate kinematics, through dynamic plate
models. The observed data includes travel-time seismo-
logical observations for P and S phases, for the travel-
time split of the S phase due to anisotropy, plate measured
velocities, and gravity data.

3.4 SAMPLING IN MODEL NETWORKS

Once the posterior PDF has been formulated in a model
network, the solution of the inverse problem consists in
drawing realizations from the posterior PDF, or alterna-
tively solving for maximum posterior model configura-
tions. We will discuss the first option in this section.

The structure of the model components, data compo-
nents, and relationships is established via the factors of
the combined PDF and, as explained before, satisfacto-
rily depicted by the associated model network graph. The
straightforward approach to sample from the posterior
PDF is to construct a Markov Chain sampler following
the sequence imposed by the graph, from the ascendants
to the descendants. There are many techniques to sample
from the priors, conditionals, and posterior PDFs [Geyer,
1992; Smith and Roberts, 1993; Tierney, 1994; Gelfand
and Smith, 1990; Liu, 1998]. The procedure I recommend
here is sufficiently general to successfully adapt to any
model network, and it is efficient for sampling. The
procedure can be separated in two major phases for (a)
sampling the joint prior PDF and (b) sampling the joint
posterior PDF.

3.4.1. Sampling the Joint Prior PDF

The prior PDF is an important factor of the posterior
PDF and is equal to the posterior if the likelihood data
factors are ignored (no observations or infinite data uncer-
tainties). To sample a realization from the joint prior PDF:

1. Draw a realization from each one of the component
priors included in the PDF.

2. According to the realization of the ascendant model
parameters, draw realizations of the first generation of
descendants according to the conditional PDFs.

3. Continue the procedure through all the generations
until the last descendant has been realized. Recall that
to generate a descendant realization, all its ascendants
should be realized, as warranted by the acyclic graph
configuration.

The appropriate technique to produce prior and condi-
tional realizations varies according to the nature of each
PDF. In the case of continuous variables, often the PDF
can be formulated as a multivariate Gaussian function. In
this case, standard sampling methods are well known, like

the square root of the covariance matrix method or Gibbs
sampling through Gaussian conditionals. Some parame-
ters are not Gaussian distributed, but may be transformed
to Gaussian after appropriate change of variables. For
the case of categorical multivariate parameters or non-
Gaussian continuous parameters, Gibbs sampling from
the univariate conditionals is often convenient.

3.4.2. Sampling the Joint Posterior PDF

Likelihood function evaluations corresponding to geo-
physical observations are commonly costly (in terms of
computation times), difficult to calculate (in terms of
elaborated numerical nonlinear computations), and not
represented by parameterized continuous PDF models.
The Metropolis—Hastings sampler is an appropriate tech-
nique to account for this type of likelihood. In the inferen-
tial setting, this sampler uses as candidate outcome a
realization of the prior PDF and proceeds by accepting or
rejecting the realization by testing the likelihood function
ratio between the candidate and the current realization in
the chain. The recommended procedure is as follows:

1. Generate a candidate realization following the joint
prior sampling chain rules described in the previous
subsection.

2. Evaluate the joint data likelihood for this realization.

3. Calculate the joint data likelihood ratio between the
candidate realization and the current realization.

4. Accept the candidate realization as the next step of
the posterior chain with probability equal to the minimum
between the likelihood ratio and one.

5. If the candidate is rejected, assign the current reali-
zation in the posterior chain.

6. Iterate the procedure from the first step.

The Metropolis sampler warrants the convergence of
the chain to a sample of the posterior PDF in long enough
runs. A description of the Metropolis sampler applied to
posterior PDFs in geophysical inverse problems can be
found in the work by Mosegaard and Tarantola [1995].

Likelihoods associated with property sampling in spe-
cific locations (e.g., well-logging or surface rock sam-
pling) are less difficult to evaluate and can be in most
cases related to geostatistical Gaussian spatial PDFs
(Kriging and Gaussian simulation). These likelihoods
may be either (a) included within the likelihood evaluated
by the Metropolis sampler or (b) used as additional mod-
eling constraint to the prior information chain as shown
by Bosch et al. [2009]. For a review in statistical spatial
models the reader is referred to the works by Dubrule
[2003], Chiles and Delfiner [2009] and Deutsch and Journel
[1992]. Multipoint statistics [Caers et al., 2000; Strebelle,
2002] allows for prior PDF sampling with improved
description of morphological features. Examples of their
application to inversion of seismic data in complex models
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are described in the works by Gonzdlez et al. [2008] and
Grana et al. [2012]. Object oriented modeling of fluvial
sedimentary systems have been demonstrated by Holden
et al. [1998] and Deutsch and Wang [1996].

3.4.3. Efficient Sampling Through Factorized
Likelihoods

When several data likelihoods are present, the
Metropolis sampler may be applied in cascade to each
one of the likelihood factors; using partial posteriors as
prior sampling PDFs for the consecutive data likelihood,
as shown by Bosch et al. [2000] and Tarantola [2005]. The
procedure is as follows:

1. Generate a candidate realization following the joint
prior sampling chain procedure.

2. Evaluate one data likelihood ratio between the
candidate and the current realization.

3. Retain the candidate realization for the next likeli-
hood factor test with probability equal to the minimum
between the likelihood ratio and one.

4. If the candidate is not retained, accept the current
realization and go to 1.

5. If the candidate is retained, repeat from 2 following
with the next likelihood factor. If retained after the last like-
lihood factor test, accept the model realization and go to 1.

Two criteria should be used when ordering the likeli-
hood factors, leaving with preference at the beginning: (1)
smoother likelihoods in terms of information (larger
uncertainties) and (2) likelihoods with smaller computa-
tional cost. The former condition (smoothness) allows
avoiding unwanted barrier problems (i.e., inability to mix
the sampling across modes separated by very low probabil-
ity zones) in the preliminary likelihood evaluations, which
can potentially affect the efficiency of the method. In any
case, the efficiency between various likelihood sequences
should be tested for evaluation and should be compared
with the option of single joint likelihood evaluation.

3.5. MAXIMUM POSTERIOR PROBABILITIES
IN MODEL NETWORKS

Another alternative in realizing a solution to the inverse
problem is searching for the configuration that maxi-
mizes the posterior probability density (MAP) and calcu-
lating the local posterior covariance matrix. The MAP
search commonly converges to the nearest mode, although
there are methods to search for the global MAP. In the
case of multimodal PDFs a single MAP configuration is
not a complete description of the problem solution; iden-
tification of major modes and the corresponding local
MAP configuration may be an alternative. It is common
in geophysical inference that the data likelihoods are
complex multimodal functions. Nevertheless, if the prior

information is monomodal and highly informative, and
such that it circumscribes the posterior into the region of
one of the modes of the data likelihood, the posterior is
then close to monomodal and the MAP constitutes an
acceptable description of the problem solution.

A classic method for searching a MAP configuration is
the Gauss—Newton method [Tarantola, 2005], which
requires the gradient and the approximate Hessian of the
natural logarithm of the posterior PDF. By defining the
objective function, S(m) =—In(c(m)), we obtain

o(m)= exp(—S(m)).

As the exponential is a positive monotonically increas-
ing function, a MAP configuration corresponds to a mini-
mal value of the objective function, and, neglecting
third-order derivatives, the posterior local covariance
matrix is the Hessian of the objective function evaluated at
the MAP. The model parameters update, Am =m"" —m”",
for a step n+1 in the iterative search towards the m,,,
satisfies

(3.16)

Hess[S(m" )J Am = —Grad[S(m")J, (3.17)
where Hess symbolizes the Hessian operator and Grad the
gradient operator. If multiplying by the prior model
covariance matrix, C''", the linear system matrix gets
dimensionless and more stable for the numerical solution,

Cf;i"'Hess[S (m” )J Am = —C"" Grad [S (m” )J )

(3.18)

Curvature Steepest descent direction

Notice that because the joint objective function is a
logarithm of the posterior PDF, the factor structure in
(3.10) transforms straightforwardly to the addition of
objective function terms, each one accounting for the
corresponding data likelihood, conditional probability,
or prior probability.

The posterior model covariance is the inverse of the
Hessian of the objective function, evaluated at the MAP
configuration. It can be calculated by inverting the
Hessian, but inverting the Curvature matrix (i.e., the prod-
uct of the prior model covariance matrix and the Hessian
of the objective function) and multiplying by the prior
covariance is commonly a more stable procedure,

szmeﬁor — ((:2:"0r Hess |:S (mMAP ):|)_1 Cf:or . (319)

To work out the linear equations to search the MAP
configuration, the data likelihood, the conditional PDFs,
and priors need to be explicitly formulated. T will use a
simple setting of a two-layered model and one data layer,
as shown in Figure 3.7, to illustrate the formulation of the
linear system of equations (3.18). It corresponds to the
case of inverting pre-stack seismic data for joint estimation
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Figure 3.7 Inference network for a hierarchical two-layered model structure, illustrated with the case of a silici-
clastic sedimentary basin description based on seismic data. Symbols are the same as in previous figures. The
corresponding structure of the posterior PDF is shown at the bottom.

of the isotropic elastic medium parameters, and primary
rock parameters in a siliciclastic sedimentary medium,
describing the total porosity, the shale factor and pore
fluid phase (water—hydrocarbon) fraction. The formula-
tion is the same for any posterior PDF with a similar
structure. For describing the isotropic medium, various
combinations of three parameters (elastic moduli, imped-
ances, mass density, seismic velocities) can be selected; a
common choice is the mass density and the seismic P and
S velocities. To be explicit, I will describe the medium by
specifying primary, m_;. ={m g .m_ . m_. .} and
secondary, m . ={mp ., » Mg eiocity s Mensivy 1> MOdel param-
eters, the joint model space being m={m_, .m_}.
Commonly, these parameters are specified at each point
over a 3D grid.

The seismic data depends explicitly on the elastic
medium configuration and parameters associated with
the seismic survey experiment (source function and geom-
etry). The seismic observations in this problem could be
travel times (tomography problems), reflection ampli-
tudes (reflectivity inversion), or the full wave field. In any
of these cases, we can formulate a forward modeling of
the data, g(m_ ), based on the seismic wave mechanical
theory, such that

d,,, —g(m,)+Ad, (3.20)

obs

where d_is the observed data, and Ad are the deviations
between the observed and the modeled data.

As already explained, rock physics is the natural link
between the primary and secondary model parameters.
After calibrating an appropriate rock physics model for
the elastic parameters using local data if available, f(m
we have

prim)’

m, =f(m,, )+Am (3.21)

where m__ are the true medium elastic parameters and
Am__ are the deviations between the true and modeled
elastic parameters.

The posterior PDF in this problem according to what
has been previously explained is

o(m)=p(m,,, )p(m, [m,, )L, (m.). (3.22)

I will model the three factors in the posterior formula-
tion by multivariate Gaussian functions. The first PDF
describes the prior information on the primary model
parameters, which could be defined with

. \T .
_ _1ly _ prior -1 __ gy Prior
p(m prim ) - Cl eXp |: /2 (m prim m prim ) Cprim (mprim m prim ):| >

(3.23)

. prior . . .
with m? > belng the expected prior primary parameters
and C . the prior covariance matrix; commonly, mp; is

. prim X X
spatially dependent and previously modeled according to
the geological stratification and formation horizon infor-

mation. The likelihood function and the conditional rock
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physics PDF are formulated by modeling the probability
of the deviations Am__and Ad in (3.20) and (3.21),

p(msec | mprim)
=c, exp[—l/z(mSec - f(mprim ))T C;elc|prim (mSec - f(mprim ))},
(3.24)
with C_.,, being the covariance matrix of the rock phys-

ics model deviations Am__. Similarly, the data likelihood
function is

Ldat (melas ):exp[_%(dobs - g(msec ))T C;zllt (dobs - g(msec )):|a
(3.29)

with C, being the data covariance, encompassing data
observational and modeling uncertainties. By adding
exponents of the three modeled factors of the posterior
PDF, the full objective functions has each of the three
information components,

S(m) = 1/2|:(n’lprim - mg:si )T C;:im (mprim - mglr-:?nr ):|
Prior information term ’
+ l/ZI:(Insec - f(mprim ))T C;elc|prim (msec - f(mprim )):|
Rock physics term ‘
+4] (4 —g(m..)' €L (4 —g(m..)) |

Geophysical term

(3.26)

Expressions g(m_ ) and f(mprim) are in general nonlin-
ear, and hence the search of the model update needs
successive iterations in the application of the Gauss—
Newton’s method described in expression (3.15). The first
and second derivatives of the objective function, as well
as algebraic simplifications, required to calculate the
model update are detailed in the work by Bosch [2004].
The resulting model update for the secondary model
parameters satisfies the linear system of equations,

AAm, =b, (3.27)
with the left-hand side being
A =T+(Cppin +FC,,, F')G' C G, (3.28)

Above, matrices G and F are the Jacobian matrices of
g(m_ ) and f(mprim) correspondingly, and I is the identity
matrix. The right-hand side of (27) is

_ prior
b_f(mprim)_msec+F(m _mprim)

prim
+(C +FC FT)GT C;zllt (dobs _g(msec ))

prim

(3.29)

sec|prim

After the model update for the secondary parameters is
calculated, the model update for the primary parameters
is obtained by [Bosch, 2004]

__ mbrior __
AInprim _mprim mprim

+CprimFT GT C;elit (dobs _g(msec ) _GAmsec )
(3.30)

Once (3.27) and (3.30) are calculated, the model param-
eters are jointly updated and a new evaluation of (3.27)—
(3.30) can be obtained by iterating towards proximity of
the MAP configuration. Commonly, convergence moni-
toring the data residual evolution until substantial reduc-
tion and stabilization.

3.6. DISCUSSION

Once the corresponding posterior probability density
is defined according to the models involved, the solution
of the inverse problem relies in generating object out-
comes that summarize the posterior information—that
is, the combination of the various data likelihoods, con-
ditionals, and prior densities. Two major approaches have
been described here: (1) sampling object configurations
in proportion to the posterior PDF and (2) searching
maximum posterior probability object configurations.
A comparison between the two options is a common
subject of discussion.

A first point to mention is that the two approaches do
not provide the same description of the posterior informa-
tion. The sampling approach provides a complete descrip-
tion of the posterior PDF. Theoretically, with a large
enough set of samples of the model parameters, all mar-
ginals, conditionals, and the joint posterior PDFs can be
approximated by the sample statistics with arbitrarily small
deviations. Also, expected values, standard deviations and
frequency histograms of the modeled object parameters
can be computed. Hence, the sampling approach produces
a full solution of the inverse problem. The optimization
approach, on the other hand, searches for the mode (the
local MAP configurations) that is the closest to a starting
search point. It is essentially local, as the model parameter
space can be always divided in a series of local mode sec-
tors. In the neighborhood of the mode the posterior covar-
iance matrix can be calculated to describe the uncertainties
and posterior correlations around the mode.

Another known limitation of the MAP configuration
is that it is usually smooth in physical (3D plus time)
space, because all the spatially distributed parameters
align with their posterior expected values. Realizations
produced from the sampling process better represent the
true spatial variability of the parameters, and they are
often more useful when a representation of the spatial
heterogeneity is relevant. A typical case is for modeling
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the fluid flow in a permeable medium, where the driving
flow locations correspond to the large permeability chan-
nels and not to the average permeability [ Dubrule, 2003].
The MAP configuration commonly underestimates by
large the fluid flow. This limitation can partly be over-
come by producing posterior simulations centered at the
MAP with superposed deviations generated according to
the posterior covariance matrix.

The computational costs involved in the optimization
and the sampling approaches are highly dependent on the
specific case and objectives of the inference; a compari-
son requires a case-by-case analysis. In general, the num-
ber of iterations involved in the search of the MAP is
much smaller than the number of model parameters
(a few iterations), whereas sampling chains require a
length (number of realizations) of several times the num-
ber of model parameters. However, the operations
required in the computation of a single iteration for the
optimization approach are much larger than the compu-
tations involved in generating one sampling step, and
they increase faster with the number of model parame-
ters. Direct matrix methods solving linear systems as
expression (3.17) typically require operations in the order
between the square and the cube of the number of model
parameters. Nevertheless, methods that take advantage
of the sparcity and/or structure of the system (3.17), or
approximate iterative solvers such as the conjugate gradi-
ents method, decrease this dependency, commonly reach-
ing performances with operations orders beneath the
square of the number of model parameters. Such numeri-
cal methods are required for the solution of large to very
large inverse problems with the optimization approach.

Another issue of discussion refers to the various spaces
associated with the inference: model parameters, mod-
eled object, modeled observations, and data parameters.
Implicit applications link the model parameter space to
the model object space, and they also link the modeled
observation space to the data space. These applications
are not commonly explicit in the general formulation of
the inference problems, but need to be accounted to
model the involved functions and PDFs.

The formulation presented herein relates data and model
parameters with basis on a combination of multiple mod-
eling processes, described by conditional probability den-
sities and likelihood functions. The basic knowledge to
establish these links across model components and data
(physical laws, geostatistical relationships) is not given pri-
marily on the model parameter space but on physical
space (3D plus time plus modeled matter). For this rea-
son, it is useful to comment on the difference between the
space of model parameters, which here is given by random
variables supporting a physical object model, and the
space of physical modeled objects. A set of object mode-

ling rules, sometimes identified as parameterization rules,
are required to transform a model parameter outcome to
a modeled object configuration in physical 3D space and
in some cases time. These rules commonly involve the
physical identification of the parameters and the construc-
tion of their outcome in space accordingly. Sometimes,
they are straightforward, like in the case of assigning
property values to a Euclidean three-dimensional grid, but
in other cases can be more elaborated. Examples are
parameters being coefficients of polynomials defining
geological body surfaces, or when the model elements are
defined over curved coordinate systems.

A realization of an object model configuration can be
regarded as the process that combines (1) drawing an out-
come of the random variables (in model parameter space)
according to the correspondent PDF and (2) passing
these parameters through the object modeling engine to
end up with a configuration of the object in the modeled
physical (3D and time) space. The modeled object con-
figuration is the result of this realization process. Once
the object modeling rules have been established and
behave as a bijective function, each outcome of the model
parameters is associated with a correspondent outcome
of the modeled object configuration, and vice versa. An
outcome of the model parameters implicitly indicates a
realization of a modeled object configuration; hence they
are sometimes treated as the same entity.

A similar distinction applies for the observation of
experiments made on the studied object (geophysical sur-
veys, well-log measurements) and the data, conceived as
parameters that describe the observations. The data also
requires a series of configuration rules to have physical
meaning (in 3D space, time, and observation nature).
Also, commonly the data used in the inverse problems
involves processing from raw (lower level) field or instru-
mental data. The understanding of the differences
between model parameters, modeled object, experimen-
tal observation, and data is useful for the formulation of
the relations between data and model parameters and the
complete description of the related uncertainties. In par-
ticular, uncertainties should involve the various modeling
processes that are present.

The issue of modeling parameter probability densities is
closely related with the object modeling transform, as dif-
ferent parameterizations produce different PDFs for the
same state of information on the modeled object. In par-
ticular, homogeneous (i.e., null-information) parameter
probability densities are straightforwardly related to the
parameterization [see Tarantola, 2005]. The object and
observational modeling transforms are implicit compo-
nents in the corresponding conditionals and likelihoods,
as well as in the geophysical (3.20) and petrophysical (3.21)
functions used to model the objective function terms.
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3.7. CONCLUSIONS

Inference problems in Earth sciences involve the inte-
gration of multiple types of knowledge, observations,
and information, which ultimately is done by the expert
and the scientific community at large by continuous
processes of partial analysis and synthesis. To support
these processes, methods for quantitative inference in
complex models and multiple data are in progress. The
inference formulation is done via the definition of prob-
ability densities over parameter spaces that model the
object or phenomenon to be described. To model the
posterior state of information, after a set of multiple
observations have been included, the data likelihood
functions can be factorized across surveys and observa-
tional methods, assuming independence of the observed
data uncertainties.

To couple components of the object model that are
responsible for diverse observations, the knowledge about
inner relationships across the object model parameters
need to be used as part of the prior information, entering
as conditional probability densities between compo-
nents of the object model. The identification of relevant
dependencies and acceptable independencies across
model components is an important issue for the perti-
nence of the model and the reliability of the inference.
The presentation of these dependencies via direct acyclic
graphs is useful, allowing a straightforward formulation
of the posterior PDF.

Once the posterior PDF is modeled, the generation of
the object posterior configurations can follow two lines:
drawing multiple realizations from the posterior PDF
(sampling approach) or searching maximum posterior
PDF configurations and their local covariance, a proce-
dure that commonly has only local validity depending on
the modes of the PDF.

The theoretical capabilities of these methods are unlim-
ited, in a mathematical sense, depending for their applica-
tion on the computational capacities and the ability to
reliably describe the object/phenomenon laws and inner
relationships across their components.
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