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ABSTRACT

The integration of information for the inference of earth structure and properties can be treated in a probabilistic 
framework by considering a posterior probability density function (PDF) that combines the information from a new 
set of observations and a prior PDF. To formulate the posterior PDF in the context of multiple datasets, the data 
likelihood functions are factorized assuming independence of uncertainties for data originating across different 
surveys. A realistic description of the earth medium requires the modelization of several properties and other struc-
tural parameters, which relate to each other according to dependency and independency notions. Thus, conditional 
probabilities across model components also factorize. The relationships across model components can be described 
via a direct acyclic graph. The basic rules for factorization of the posterior PDF are easily obtained from the graph 
organization. Once the posterior probability has been formulated, realizations can be obtained following a sampling 
approach or searching for a maximum posterior probability earth medium configuration. In the first case, sampling 
algorithms will adapt to the factorized structure of the posterior PDF. In the second case, iterative second‐ or first‐
order approximations of the objective function conduce to the solution of a system of equations for the model update.
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3.1. INTRODUCTION

The appraisal of  solid Earth structure and properties 
requires modeling the medium’s heterogeneous compo-
sition and lithotypes, the morphology of  geological 
bodies, pore fluids, fractures, knowledge, and informa-
tion that are linked at various scales, and the medium’s 
physical response to field measurements. This implies 
the description of various types of (1) medium properties 
and  structural parameters, (2) observations provided 
by  surveys, well‐logs, and rock sample studies, and 
(3)  knowledge to establish relationships across the 
model properties and observations. The full multiplicity 
of  components and intervening relationships could be 

considered too large to be workable. Nevertheless, given 
the goal of  a specific study and the available informa-
tion, a relevant set of  such components and relation-
ships can be retained for modeling, while the rest is 
neglected. The appropriate selection conforms to the 
pertinence of  the model component to the phenome-
non observed and the goal of  the study.

Integration of multiple data, information, and knowl-
edge has been considered a key issue in natural sciences, 
and particularly in Earth sciences. The relevant informa-
tion is heterogeneous in its nature (properties, objects, 
phenomena, scales) and available at diverse treatment 
levels: The data are the raw support of the information 
(processed and interpreted data), which is understood 
in  terms of knowledge (a successful theory). With the 
advent of larger computational possibilities in the past 
decades, the quantitative treatment of multicomponent 
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complex models and observations is in progress to provide 
(a) more realism to the description of the Earth media 
and (b) more accuracy and precision to the estimates 
[Linde et al., 2006a; Bosch et al., 2010; Torres‐Verdin et al., 
2012]. Examples of joint inversion of multiple geophysical 
datasets, in various Earth sciences inference contexts, are 
described in the works by Lines et al. [1988], Haber and 
Oldenburg [1997], Bosch [1999], Bosch et al. [2001, 
2004], Tiberi et al. [2003], Gallardo et al. [2003], Gallardo 
and Meju [2004], Linde et al. [2006b], Guillen et  al. 
[2007], Khan et al. [2007], Alpak et al. [2008], Doetsch et al. 
[2010], Buland and Kolbjomsen [2012], and Chen and 
Hoversten [2012].

The present work focuses on the formulation of inverse 
problems in Earth sciences, for the case of  models con-
figured with multiple spatially distributed properties, 
subjected to different types of physical observations and/
or embodying multiple relationships across properties 
and observations. The nature of  the formulation and 
approaches to solve inverse problems is not different for 
this scenario. The issues to solve consists in (1) how to 
compose relationships and information across the model 
components and (2) how to draw from the composed 
information realizations of the joint model, or maximum 
posterior probability model configurations, according to 
the solution approach followed. To explain these issues, 
I will not follow a rigorous deductive path. I will mention 
the basic principles and illustrate their formulation for 
various common examples of inferential interest in earth 
sciences.

The first section of this chapter describes the formula-
tion of posterior probability densities for complex mod-
els, for the case where their components are structured 
in hierarchical layers, and for multiple sets of data. The 
second section unfolds the structure of the posterior 
probability density for less structured models, via the 
support of direct acyclic graphs [Pearl, 1986; Thulasiraman 
and Swamy, 1992] that describe the relations across 
the  model components and datasets. The third section 
describes the stochastic approach to the solution of the 
inverse problem by sampling the posterior density with 
Markov Chains, following its factor structure. The fourth 
section describes the optimization approach to the solu-
tion of the inverse problem, which consists of searching 
for the model configuration that maximizes the posterior 
density. Finally, the discussion and conclusion sections 
close the chapter.

3.2. MULTIPLE PHYSICAL OBSERVATIONS 
AND MODEL COMPONENTS

The general formulation of inverse problems is out-
lined here in a probabilistic framework, within the scope 
of Bayesian inference. The term Bayesian refers to the 

interpretation of probabilities as a description of the 
information, knowledge, or uncertainty on parameter 
spaces that support a model of a natural object or phe-
nomenon. A state of information about the modeled 
object is described by the probability density function 
(PDF) defined over the model parameter space or, equiv-
alently, by the cumulative distribution function (CDF).The 
variables in the parameter space are considered random 
as they take different values each time they are evaluated 
and represent the corresponding state of information. 
Each time the model parameters are evaluated, their out-
come is drawn in proportion to the corresponding PDF 
realizing a different configuration of the modeled earth 
medium. The discussion section expands the analysis of 
the relationship between the model parameter space and 
the modeled object space.

The common formulation of inverse problems consid-
ers a prior state of information, a set of observations 
related with the modeled object, and the improved poste-
rior state of information resulting from the combination 
of the prior and the new information provided by the 
data interpretation. The posterior probability density is 
given by

	 m m mc Ldata ,	 (3.1)

where m is a multivariate random variable in the model 
parameter space, c is a normalization constant, ρ (m) 
is  the prior PDF, and Ldata(m) is the data likelihood 
function, which embodies the new information provided 
by the observations. Normalization constants will be 
included in the following equations of the posterior PDF 
but not further identified.

As we know, observations are not commonly made 
directly on the model parameters, but in terms of addi-
tional related parameters that we refer to as data. The 
knowledge of the relationship between the data and the 
model parameters, including the associated uncertainties, 
provides the means to transform the former into informa-
tion of the latter—that is, interpret the data in terms of 
the modeled object information. The formal derivation 
of the data likelihood function in (3.1) depends on the 
formulation of the relationship between the model and 
data spaces and the associated uncertainties. In the gen-
eral case [Tarantola, 2005], the information provided by 
the theory and the observations are modeled indepen-
dently and combined in a joint model‐data space. The 
data likelihood function is calculated as a marginal non‐
normalized probability in the model parameter space,

	 L ddata theory obsm d m d d| .	 (3.2)

Above, d are the true data parameters here considered 
with uniform homogeneous probability density. It is the 
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data that would have been observed in the absence of 
observational and data processing errors. The probability 
density ρobs(d) describes the information on the true data 
provided by the observation experience, d d dobs obs, 
via the corresponding observed data dobs and the associ-
ated uncertainties Δdobs. The conditional probability den-
sity theory ( )|d m  describes the data–model relationship, 
based on theoretical or empirical knowledge, including 
the data modeling uncertainties. The homogeneous 
probability density [Mosegaard, 2011; Mosegaard and 
Tarantola, 2002; Tarantola, 2005] describes the state of 
null information about the parameter. The homogeneous 
PDF of the data should be included in the denominator 
of the integrand in (3.2), in the case where it is not mod-
eled as uniform (constant).

It is also common to model the observational uncertain-
ties within the data–model conditional, instead of provid-
ing the independent observational PDF, ρobs(d), present in 
the general expression (3.2). In this case the data likelihood 
function can be formulated straight forwardly as

	 Ldata theory obsm d m| ,	 (3.3)

where dobs are the observed data. Both formulations are 
equivalent if  uncertainties are appropriately modeled. 
The reader is referred to the work by Tarantola [2005] for 
a general derivation of the above expressions from the 
theory of combination of information states, generalized 
for parameters with nonuniform homogeneous probability 
densities. Equations (3.1)–(3.3) are the common basis for 
statistical inference, although derived from different the-
oretical approaches.

3.2.1. Likelihood Function Factorization

Let us now consider a model with various inner compo-
nents of model parameters, m m m m{ , , , }1 2 K , influenced 
by various types of data observations, d d d d{ , , , }1 2 N , 
as required in integrated data modeling. The inner com-
ponents of the model parameters, mk, could correspond 
to different property fields, the same property fields at dif-
ferent scales, geometric boundaries of geological objects, 
and other subsets of the model parameters specific case. 
Each of these multiple components is commonly of high 
dimensionality, such as a property field distributed on a 
spatial grid. The data components are partitioned accord-
ing to different observational phenomenon (gravity, seismic, 
electric), derived data (seismic travel times, amplitudes, 
frequencies), or field surveys. We can decompose the 
observational PDF in the joint data space by the product 
of marginals,

	
obs obs obs obs

obs

d d d d
d

N N N N

n n

1 1 1 1

,
	 (3.4)

under the assumption of independent observational data 
uncertainties across the surveys. Recall that the observa-
tional PDF, ρobs(d), only embodies information about the 
measurement process and does not anticipate the posterior 
information in data space—that is, as present in the 
posterior marginal of (3.1). The assumption is well justi-
fied for different surveys, which commonly use different 
instrumentation and field teams, and for different obser-
vational phenomenon (rock samples, well‐logs, seismic 
experiment, gravity measurement). Nevertheless, in a 
strict sense, Eq. (3.4) is an approximation, as measure-
ments across different surveys may be affected by com-
monly used information (a common digital elevation 
model, seasonal terrain conditions, or other factors). We 
assume herein that possible correlated factors are minor 
compared with the total observational uncertainty. The 
above decomposition of the observational PDF can in 
some cases be applied to data components derived from 
the same survey. As an example, various types of partial 
data can be obtained from seismic surveys, such as phase 
travel times, reflection amplitudes, and frequency con-
tent, which are commonly interpreted independently 
assuming unrelated uncertainties.

Similarly, the theoretical conditional probability is 
composed by the product of conditional marginals,

theory theory theory

theory

d m d m d m
d m

| | |
|

N N N N1 1

1 1 theory n nd m| ,
	 (3.5)

when assuming independence of the modeling uncertain-
ties. Modeling of different phenomenon (seismic, electric, 
gravity) and different components of the same phenom-
enon (seismic travel times, amplitude reflections, fre-
quency decay) are based on different types of theoretical 
knowledge and are likely to have independent modeling 
uncertainties, thereby supporting the stated assumption. 
Again, the expression is an approximation that neglects 
possible related factors emerging from common mode-
ling choices (e.g., common spatial property discretization 
for instance).

By substitution of (3.4) and (3.5) in (3.2) followed by 
integration, we obtain the joint likelihood function as the 
product of the data likelihood functions for each of the 
data components,

L L L L LN ndata data data data datam m m m m1 2 ,

(3.6)

with

	 L dn n n n n ndata theory obsm d m d d| .	 (3.7)

A similar result is obtained by substitution of (3.5) in 
(3.3). The factorization of the joint data likelihood 
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according to the data subsets is equivalent to the addition 
of data objective function terms in the framework of 
deterministic solutions to the inverse problem, as will be 
explained in the corresponding section of this chapter.

3.2.2. Prior PDF Factorization

At the multiple components model, the prior PDF on 
the model parameters can be decomposed by following 
the rule of conditional probabilities:

	
m m m m

m m m m
K K

K K

| , ,
| , , .

1 1

1 2 1 1

	 (3.8)

Given the knowledge on the relationships across the 
model components, some of these conditionals could be 
simplified. Causal or empirical statistical relationships 
impose the relevant dependencies, and independencies, 
enforcing a hierarchy to the model components. In fig-
ure 3.1, we present a common scheme for a multicompo-
nent model with multiple data observations, structured in 
two layers of properties: primary, m m m mpri { , }, ,1 2 M , 
and secondary, m m m msec { }, ,M M K1 2 , and one 
observed data layer. In this setting, the secondary proper-
ties are dependent on the primary properties, while the 
observed data are dependent on the secondary properties. 
The data are not directly (explicitly) dependent on the 

primary properties. With the imposed hierarchy and 
model layers, the prior information can be satisfactorily 
decomposed by

	
m m m m

m m m m m m
sec pri pri

, ,

|

, , | , , ,M K M M1 1 1

	 (3.9)

and the posterior PDF for the situation in Figure  3.1 
takes the form

m m m m m m m
m m

c
L L

M K M M

data M data M

1 1 1

1 1 2 2

, | , , , ,
Ldata M K3 2m m, ,

	

(3.10)

with the factorization of the likelihood function as previ-
ously explained and including the explicit dependency of 
each data component on the corresponding secondary 
model component as indicated in Figure 3.1. It is com-
mon to define an objective function proportional to the 
logarithm of the posterior PDF, as will be described in 
the optimization approach section of this chapter. The 
factorization of the posterior PDF, shown in expression 
(3.10), is in this setting equivalent to the addition of terms 
in the objective function, each one corresponding to a 
particular factor of the posterior PDF.

In Figure 3.1, I have drawn separate data component 
boxes to indicate independence across the data 
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σ(m) = c ρ(mM+1, mK | mM, …, m1) ρ(mM, …, m1) Ldata 1 (mM + 1) Ldata 2 (mM + 2) Ldata 3 (mM + 2, mK)

Figure 3.1  Random variables organized in hierarchical layers describing model parameters and data in an infer-
ence problem. Bold arrows indicate dependencies across random variables and its modeling sense. Variables in 
common blocks are modeled jointly. Gray boxes indicate model parameters describing Earth medium properties 
and structure, while white boxes indicate parameters describing experimental observations and measurements. 
The composition of the posterior PDF is shown at the bottom as a product of data likelihood functions, priors, and 
conditional PDFs.
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components with respect to the observational and mod-
eling data uncertainties. The juxtaposition of boxes 
shown for model components at the primary and second-
ary model layers indicate retention of dependencies 
across these components in the prior, ρ(mM, …, m1), and 
conditional, ( , | , , )m m m mM K M1 1 ; these properties 
should be modeled jointly considering their cross‐
relations, and spatial relations could be accounted for.

3.2.3. Examples in Common Inferential Settings

When an inferential problem is analyzed, the first step 
is to define the model components, their internal relations, 
and their data. This should be done by an expert, or a 
team of  experts, in order to ensure the pertinence of  the 
model and data to satisfy the goal of  the inference. The 
network design introduced above involves retaining 
model components, their relevant relations, their sets of 
data, and their relations with the model components. 
Dependencies and independencies need to be defined.

In this section, I will illustrate the structure of common 
inferential problems in Earth sciences and the appropriate 

formulation of the posterior PDF. In Figures 3.2 and 3.3, 
I show layered multicomponent models that are useful in 
inverse problems at local, regional and planetary scales. 
In Figure 3.2 the setting for an integrated description of 
a siliciclastic sedimentary medium is depicted by four 
parameter layers: three model parameter layers and one 
data layer.

In sedimentary basins, the spatial statistical characteris-
tics of the medium properties is at large scope heterogene-
ous, whereas within the same formation or units the 
statistics can be analyzed as spatially homogeneous. Thus, 
for appropriate statistical modeling, a primary space 
describing the formation delineation and their sequence is 
needed. This information can be parameterized by the 
formation category sequence (formation identification) 
and a geometrical framework delimiting the statistically 
homogeneous medium regions by the corresponding hori-
zons. Prior information on these primary parameters, 
mformation, is usually obtained via interpreted seismic hori-
zons, well‐log data, and geological knowledge of the area.

Within formations, several types of  lithology can 
be present (carbonates, igneous intrusions, siliciclastic 
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Figure 3.2  Example of model parameter structure in Earth science inference settings: the case of siliciclastic sedi-
mentary basin description based on seismic reflection amplitudes, seismic pre‐stack P arrival times and gravity 
observations. Dependencies across random variables and their hierarchies are shown by bold arrows. Nonrandom 
parameters required for the conditionals, priors, and likelihoods are indicated in dashed ellipses. Bold boxes 
show the random parameters for description of the earth medium (gray) and observations (white). The correspond-
ing structure of the posterior PDF is shown as the bottom.
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Figure  3.3  Example of model parameter structure in earth science inference settings: (a) Lithotype geobody 
description at crustal regional scale based on gravity, magnetic, and seismic travel‐time data. (b) Planet scale 
composition and temperature description constrained by seismic travel times, gravity data, and the inertia 
moment. Symbols are the same as in previous figures. The corresponding structure of the posterior PDF is shown 
at the bottom of each figure.
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sedimentary rocks). We will consider here the case of 
siliciclastic sedimentary rocks, where lithology can be 
described by the shale volume fraction. Another second-
ary parameter is the total porosity that influences the 
elastic medium properties and density, and finally the 
pore fluid volume fraction (saturation) is important in 
systems with two or more fluids. Conditioned to the for-
mation and well‐log information, geostatistical parame-
ters describing the rock matrix and fluid properties are 
commonly characterized to model this secondary layer of 
parameters, m m m mrock vshale porosity saturation{ , , }. In this case 
we refer to the use of well data to calibrate spatially 
homogeneous property statistics (means, covariances). 
An example with spatially localized well‐log information 
will be considered in the next section of this chapter.

According to the rock matrix and fluid configurations, 
rock physical models are used to calculate properties that 
characterize the mechanical behavior of the medium, like 
compressional seismic velocity and shear seismic velocity as 
well as the mass density, m m m mphys P velocity Svelocity density{ , , }. 
This set of parameters represents the third layer of model 
parameters.

Finally, Figure  3.2 includes in the fourth layer data 
from common geophysical surveys that provide informa-
tion to interpret sedimentary basin stratification, depth, 
and structure. Interpretation of the seismic data can be in 
various ways, either in full wave form (full data) or by 
separating data components. It is common to interpret in 
a separate manner the pre‐stack P‐wave travel time for 
major well‐identified reflectors and the reflection ampli-
tudes after migration (spatial repositioning of the seismic 
data). We conform the data parameter layer in this exam-
ple with these seismic partial data and the gravity data, 
d d d d{ }, ,amplitude P pre-stack time gravity .

Notice that seismic data subsets of different nature 
contribute at the right‐hand side of the figure to the 
observed data and at the left‐hand side to the prior infor-
mation. The prior information is based on interpreted 
horizons in migrated and stacked data, whereas the data 
to be modeled at the right‐hand side correspond to 
(1) seismic reflection amplitudes and (2) travel times of 
major events in pre‐stack domain. There is no redun-
dancy or cyclicity in the problem definition.

According to the layered model and the data relations 
in Figure  3.2, and applying the previous concepts for 
composition of the posterior density, we have

	

m m m m m mc formation vshale porosity saturation formati, , | oon

P velocity Svelocity density vshale porosity sm m m m m m, , | , , aaturation

amplitude P velocity Svelocity density P pL Lm m m, , rre-stack time

P velocity gravity densitym mL .

(3.11)

where, ρ(mformation) is the prior PDF on the formation 
sequence and delimiting horizon boundaries, ( ,mvshale

m m mporosity saturation formation, | ) is the PDF of the rock matrix 
and fluid parameters conditioned by the formation, and 

( , , | , ,m m m m m mP velocity Svelocity density vshale porosity saturattion ) is the 
PDF of the physical rock properties conditioned by the 
rock matrix and fluid parameters. The likelihood func-
tions are identified according to the set of observations 
and the related physical model argument. Figure 3.2 also 
shows some of the information needed for the definition 
of the priors, conditionals, and likelihoods, which is 
employed in the modeling as nonrandom parameters: the 
seismic source wavelets, the parameters of the rock phys-
ics model, and parameters of the conditional geostatisti-
cal models. These parameters will not vary in the inference 
and are previously estimated from the analysis of the data 
and additional information.

Similar components to the example shown in Figure 3.2 
can be found in the papers by Bosch [2004], Larsen et al. 
[2006], Bosch et al. [2007], Bosch et al. [2009], Grana and 
Della Rosa [2010], and Grana et al. [2012] with details on 
how to model the specific prior, conditionals, and obser-
vational PDFs.

Considering now a larger scale, Figure 3.3a shows a set-
ting for the inference of the geological structure at the 
crust, similar to the one employed by Bosch [1999], Bosch 
et al. [2001, 2004] and Guillen et al. [2007]. In this case, the 
primary frame is given by the description of the geometry 
of major lithotype geobody boundaries (e.g., gabbro, gran-
ite, sediments). The physical medium properties are mod-
eled conditioned to the geobody lithotype by an empirical 
joint physical property density that is derived based on 
laboratory rock measurements for each lithotype. Finally, 
the observed data corresponds to common survey observa-
tions that provide information at large regional/crustal 
scales: gravity, magnetic, seismic refraction, and/or earth-
quake travel times. The resulting posterior density accord-
ing to the model and data structure is given in the figure.

A similar parameter structure, shown in Figure  3.3b, 
was used at global satellite and planetary scale by Khan 
et al. [2006] to infer the thermal and compositional struc-
ture of the moon from available data on P‐wave travel 
times, gravity observations, and inertia moment. In this 
case the primary parameters were the temperature and 
composition, and the secondary parameters were the seis-
mic compressional velocity and mass density. A petrologi-
cal model, based on computations of mineral phase 
proportions in the mantle, was used for the prediction of 
the mass density and seismic velocity conditioned to the 
mantle composition and temperature. The same approach 
was applied, with differences in the constraining geophysi-
cal data, to infer the composition and temperature of 
Mars [Khan and Connolly, 2008] and the Earth’s mantle 
[Khan et al., 2008].
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3.2.4. The Role of Rock Physics and Dynamic Models 
as Coupling Information

In the examples presented above, an important role is 
given to relationships across model components, which 
are described by inner model conditional PDFs. Multiple 
properties defined at the same points are naturally linked. 
In solid Earth models, relationships are imposed by rock 
physics, but also geology, sedimentology, mineralogy, and 
chemistry can provide relational information depending 
on the setting.

Approaches to model the conditionals between the phys-
ical rock properties (e.g., elastic moduli, seismic velocities, 
mass density, viscosity, electrical resistivity) from basic rock 
frame constitution and fluids (e.g., matrix lithology, poros-
ity, fluid types, and fractions) are multiple. I will refer below 
to empirical and rock physics model‐based approaches.

An empirical approach to the formulation of the condi-
tional of physical medium parameters to lithotype cate-
gories can be illustrated, for example, by the work of Bosch 
[1999] and Bosch et al. [2001]. The characterization of the 
mass density and magnetic susceptibility was based on 
laboratory rock sample measurement data for each one of 
the involved geobody lithotypes of the studied area. An 
empirical spatial (geostatistical) simulation model was 
elaborated for the conditional ( | ),m m mdensity susceptibility litho  
by using mixtures of multivariate Gaussian functions. 
The PDF for the mass density and magnetic susceptibility 
in a node depended on the lithotype of the geobody (cat-
egorical variable) and the mass density and magnetic sus-
ceptibility values at the other nodes within the geobody, 
according to the mentioned model. Because of the scar-
city of data in some applications, the covariance (or 
equivalently semivariogram) ranges need to be assumed; 
in the work by Bosch et al. [2001] it was based on the geo-
statistical characterization of similar areas from field 
measurements [Bourne, 1993]. Additional examples of the 
application of an empirical approach to formulate prob-
abilities of the physical rock properties, conditioned to 
lithology and reservoir properties, are described in the 
works by Mukerji et al. [2001], Larsen et al. [2006], and 
Ulvmoen et al. [2010].

Relationships between the elastic moduli, mass density, 
and other physical rock properties have been studied for 
various types of rocks and Earth media, within the 
domain of rock physics. Common models of rock physics 
for relating acoustic and elastic properties to rock matrix 
and fluid components are described in detail by Mavko 
et al. [2003] and Hilterman [2001]. For sedimentary rocks, 
and particularly for the most common siliciclastic sedi-
mentary rocks, a large set of modeling tools are available. 
Predictive models for elastic and other physical proper-
ties for mantle material have also been studied. A second 
type of approach, less dependent on a specific set of data 

than the empirical approach, consists in using appropri-
ate rock physics models for the prediction of the physical 
properties from rock matrix and fluid properties,

	 m f m mphys rock phys .	 (3.12)

where, f(mrock) is a rock physics function that models the 
involved physical rock properties and Δmphys are the devi-
ations from the prediction. It is important to mention 
that no rock physics model has universal validity. Hence, 
all rock physics models should be evaluated and cali-
brated against actual property data from the application 
area. The statistics for the deviations Δmphys can be char-
acterized by comparing the rock physics model prediction 
and property measurements for the area (usually well‐log 
or core data). The statistical model for the deviations,

  m f m m m mphys rock phys phys rock| ,	 (3.13)

conduce straightforwardly to the conditional PDF for the 
physical model parameters. In addition to the rock phys-
ics model deviations, measurement uncertainties could 
also be accounted for in ρ(∆mphys) when relevant.

Examples of the rock physics‐based approach outlined 
above for modeling the dependency of acoustic and elas-
tic properties from rock matrix and fluid properties are 
described by Mavko and Mukerji [1998], Bosch [2004], 
Bosch et al. [2007], Spikes et al. [2007], Bosch et al. [2009], 
Grana et al. [2012], Suman and Mukerji [2013], and Grana 
[2014] for modeling the dependency of acoustic and elas-
tic properties from rock matrix and fluid properties.

At the planetary scale, physical medium properties, 
such as seismic velocities and density, are a function of 
the mantle composition and temperature. The problem is 
nonlinear due to mineral phase changes. Nevertheless, it 
is fully tractable via petrophysical models, such as the one 
described by Connolly [2005] that is based on the minimi-
zation of the free energy associated with the mixture of 
mantle minerals. This approach was followed by Khan 
et al. [2006] and Khan and Connolly [2008] to model petro-
physical conditionals for inferring the thermal and com-
positional configuration of the moon and Mars. Also, 
Hacker et al. [2003] elaborated a model for the prediction 
of the compressional velocities and mass density in the 
Earth mantle.

When modeling phenomena evolving in time, dynamic 
models are the natural link between the various time‐
lapse observations or velocity observations. In the case of 
the mantle description, flow equations can be useful to 
link temperature fields and mantle kinematics. In the case 
of time‐lapse seismic in reservoirs under production, 
fluid flow modeling can be also used as inner link between 
the time‐lapse configurations. Applications under various 
approaches are shown in the papers by Huang [2001], 
Mezgahni et al. [2004], and Dadashpour et al. [2009].
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In addition to rock physics and dynamic models, struc-
tural features such as the location of geologic boundaries 
[Lines et al., 1988; Haber and Oldenburg, 1997; Bosch 
et al., 2001; Gallardo et al., 2003; Guillen et al., 2007] or 
the requirement of similar directions for property spatial 
gradients [Gallardo and Meju, 2004; Doetsch et al., 2010] 
are also used for model conditioning across medium 
property fields.

3.3. GRAPHS AND POSTERIOR 
PROBABILITY DENSITIES

As shown in the previous section, the information 
about parameter components and dependencies are eas-
ily presented in graphical form, as in Figures  3.1–3.3, 
facilitating a straightforward definition of the posterior 
probability densities. So far we have presented examples 
with hierarchical model parameters layers and a final 
data layer: Priors are given for the first model layer, con-
ditionals at the intermediate model layers and data likeli-
hoods at the final layer. However, more heterogeneous 
networks of model and data subspaces can be analyzed 
for inference following the underlying principles.

A graphical structure known as direct acyclic graph 
(DAG) [Thulasiraman and Swamy, 1992] is useful to 
describe relationships across model parameters that are less 
structured than a hierarchical sequence of model layers. 

The DAG is defined by a set of nodes, which are here the 
model and data components, and a set of directed arrows 
that link the nodes, which will represent direct dependency 
relationships. In the DAG, it is required that no closed 
directed path exists in the graph. If a parameter subspace 
mn points in the graph to a subspace mk, the latter is consid-
ered a descendant of the former, and the former an ascend-
ant of the latter. Acyclicity warrants that no node can be its 
own descendant or ascendant; Figure 3.4 shows an exam-
ple of a DAG relating model and data components. Notice 
that we have data that are dependent on different model 
component generations and direct influences (arrows) 
across model components separated by more than one 
generation; data nodes do not have descendants. A given 
DAG and the PDF defined over the joint parameter space 
defines what is called a Bayesian network, sometimes also 
called belief network or simply inference network [Pearl, 
1986, 1994; Ben‐Gal, 2007; Griffiths et al., 2008].

The same principles applied in (3.6) and (3.9) produce 
the following rules for the factorization of the posterior 
PDF over the DAG:

1. Each model node with no ascendants introduces a 
prior PDF factor.

2. Each arrow across model nodes contributes with a 
conditional PDF factor.

3. Each data node contributes with a likelihood func-
tion factor.
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σ(m) = ρ(m1, m2) ρ(m3) ρ(m5, m6|m2, m3) ρ(m4|m1) ρ(m7|m4, m5, m6) ρ(m8|m5, m6)
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Figure 3.4  Example of an inference network defined over a direct acyclic graph (DAG). Dependencies across 
random variables are shown by bold arrows. The corresponding structure of the posterior PDF is shown at the 
bottom of the figure. Model components within common boxes are jointly modeled. Gray boxes indicate model 
parameters describing the earth medium properties and structure, while white boxes indicate model parameters 
describing experimental observations and measurements.
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According to these rules, the posterior PDF for the 
DAG in Figure 3.4 is

	

m m m m m m m m
m m m m m m m
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, , | ,
| | , , 88 5 6

9 3 6 1 8 9 2 9

3 4 7

| ,
| ,

,

m m
m m m m m m

m m
L L

L
data data

data

,
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(3.14)

The sense of some of the DAG relations depends on 
the modeling decisions made. When the relationships are 
based on theoretical models, the nature of the theory 
commonly imposes the sense of the direct (easier) mode-
ling, complying with a causality notion. Examples of 
Bayesian model networks used for oil reservoir descrip-
tion, with illustration of the specific graph structure 
defined, are described in the works by Eidsvik et al. [2004], 

Bosch et al. [2007], Rimstad et al. [2012] and Chen and 
Hoversten [2012]. Examples of similar networks applied 
to decision making can be found in the work by 
Bhattacharjya and Mukerji [2006] and Martinelli et al. 
[2013].

Figure 3.5 shows an application example of the infer-
ence with a DAG relational description across model and 
data components, for sedimentary strata description. In 
the setting of Figure 3.5, the formational random param-
eters of Figure 3.2 are simplified to be a known (known 
horizons and formations in reflection seismic time) part 
of the prior information. Additional data have been 
included consisting of well‐log observations in given loca-
tions (well paths) for the porosity, shale fraction, water 
saturation, and elastic medium parameters (P‐wave and 
S‐wave velocities and mass density). The seismic source 
wavelet, considered a nonrandom parameter in Figure 3.3, 
has been randomized in order to adjust the seismic source 
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data, including the estimation of the source wavelet and well‐log data priors on the medium properties. Symbols 
are the same as in previous figures. The corresponding structure of the posterior PDF is shown at the bottom.
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wavelet within the inference process. With the relation-
ships shown in the figure, the posterior PDF is

 

m m m m m

m m

c

L
rock source phys rock

amplitude phys so

|

, uurce well rock rock

well phys phys

L

L
log

log ,

m

m

	 (3.15)

where ρ(msource) is the prior information on the source 
wavelet, usually obtained by preliminary well to seismic 
tie, and ρ(mrock) is the prior information on the rock 
matrix and fluid parameters (total porosity, shale frac-
tion, and water saturation). The seismic amplitude likeli-
hood, Lamplitude(mphys  msource), is now dependent on the 
source wavelet in addition to the elastic medium param-
eters, and there are likelihood functions, Lwell- rock rocklog ( )m  
and Lwell- phys physlog ( )m , corresponding to the well‐log 
measurements of the rock and physical properties at spe-
cific well‐path locations. More details about the source 

wavelet inference are given by Bosch et al. [2007], and for 
well‐log data inclusion see Bosch et al. [2009].

Figure  3.6 shows another inference network defined 
over a DAG. I am showing in this figure a network pro-
posal for the inference of mantle properties and dynam-
ics, by coupling seismic tomography, gravity, and plate 
velocity observations. In this case, dynamic models for 
the mantle and plates are part of the inner coupling of 
the model components. Primary parameters are the min-
eralogical mantle composition, together with the temper-
ature and pressure. A descendant set of parameters are 
the compressional seismic velocity, the shear velocity, the 
mass density, and the viscosity, which should be modeled 
by composing mineral fractions, temperature, and pres-
sure dependencies. Another set of descendant parameters 
are the mantle dynamics given by stress and velocities, 
dependent on the mantle configuration and physical 
properties. Mantle velocity imposes anisotropy in the 
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propagation of seismic shear waves (birefringence 
phenomenon), which is measurable from seismological 
observations. Mantle velocities at the surface are also 
related to the plate kinematics, through dynamic plate 
models. The observed data includes travel‐time seismo-
logical observations for P and S phases, for the travel‐
time split of the S phase due to anisotropy, plate measured 
velocities, and gravity data.

3.4 SAMPLING IN MODEL NETWORKS

Once the posterior PDF has been formulated in a model 
network, the solution of the inverse problem consists in 
drawing realizations from the posterior PDF, or alterna-
tively solving for maximum posterior model configura-
tions. We will discuss the first option in this section.

The structure of the model components, data compo-
nents, and relationships is established via the factors of 
the combined PDF and, as explained before, satisfacto-
rily depicted by the associated model network graph. The 
straightforward approach to sample from the posterior 
PDF is to construct a Markov Chain sampler following 
the sequence imposed by the graph, from the ascendants 
to the descendants. There are many techniques to sample 
from the priors, conditionals, and posterior PDFs [Geyer, 
1992; Smith and Roberts, 1993; Tierney, 1994; Gelfand 
and Smith, 1990; Liu, 1998]. The procedure I recommend 
here is sufficiently general to successfully adapt to any 
model network, and it is efficient for sampling. The 
procedure can be separated in two major phases for (a) 
sampling the joint prior PDF and (b) sampling the joint 
posterior PDF.

3.4.1. Sampling the Joint Prior PDF

The prior PDF is an important factor of the posterior 
PDF and is equal to the posterior if the likelihood data 
factors are ignored (no observations or infinite data uncer-
tainties). To sample a realization from the joint prior PDF:

1. Draw a realization from each one of the component 
priors included in the PDF.

2. According to the realization of the ascendant model 
parameters, draw realizations of the first generation of 
descendants according to the conditional PDFs.

3. Continue the procedure through all the generations 
until the last descendant has been realized. Recall that 
to  generate a descendant realization, all its ascendants 
should be realized, as warranted by the acyclic graph 
configuration.

The appropriate technique to produce prior and condi-
tional realizations varies according to the nature of each 
PDF. In the case of continuous variables, often the PDF 
can be formulated as a multivariate Gaussian function. In 
this case, standard sampling methods are well known, like 

the square root of the covariance matrix method or Gibbs 
sampling through Gaussian conditionals. Some parame-
ters are not Gaussian distributed, but may be transformed 
to Gaussian after appropriate change of variables. For 
the case of categorical multivariate parameters or non‐
Gaussian continuous parameters, Gibbs sampling from 
the univariate conditionals is often convenient.

3.4.2. Sampling the Joint Posterior PDF

Likelihood function evaluations corresponding to geo-
physical observations are commonly costly (in terms of 
computation times), difficult to calculate (in terms of 
elaborated numerical nonlinear computations), and not 
represented by parameterized continuous PDF models. 
The Metropolis–Hastings sampler is an appropriate tech-
nique to account for this type of likelihood. In the inferen-
tial setting, this sampler uses as candidate outcome a 
realization of the prior PDF and proceeds by accepting or 
rejecting the realization by testing the likelihood function 
ratio between the candidate and the current realization in 
the chain. The recommended procedure is as follows:

1. Generate a candidate realization following the joint 
prior sampling chain rules described in the previous 
subsection.

2. Evaluate the joint data likelihood for this realization.
3. Calculate the joint data likelihood ratio between the 

candidate realization and the current realization.
4. Accept the candidate realization as the next step of 

the posterior chain with probability equal to the minimum 
between the likelihood ratio and one.

5. If  the candidate is rejected, assign the current reali-
zation in the posterior chain.

6. Iterate the procedure from the first step.
The Metropolis sampler warrants the convergence of 

the chain to a sample of the posterior PDF in long enough 
runs. A description of the Metropolis sampler applied to 
posterior PDFs in geophysical inverse problems can be 
found in the work by Mosegaard and Tarantola [1995].

Likelihoods associated with property sampling in spe-
cific locations (e.g., well‐logging or surface rock sam-
pling) are less difficult to evaluate and can be in most 
cases related to geostatistical Gaussian spatial PDFs 
(Kriging and Gaussian simulation). These likelihoods 
may be either (a) included within the likelihood evaluated 
by the Metropolis sampler or (b) used as additional mod-
eling constraint to the prior information chain as shown 
by Bosch et al. [2009]. For a review in statistical spatial 
models the reader is referred to the works by Dubrule 
[2003], Chiles and Delfiner [2009] and Deutsch and Journel 
[1992]. Multipoint statistics [Caers et al., 2000; Strebelle, 
2002] allows for prior PDF sampling with improved 
description of morphological features. Examples of their 
application to inversion of seismic data in complex models 
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are described in the works by González et al. [2008] and 
Grana et al. [2012]. Object oriented modeling of fluvial 
sedimentary systems have been demonstrated by Holden 
et al. [1998] and Deutsch and Wang [1996].

3.4.3. Efficient Sampling Through Factorized 
Likelihoods

When several data likelihoods are present, the 
Metropolis sampler may be applied in cascade to each 
one of the likelihood factors; using partial posteriors as 
prior sampling PDFs for the consecutive data likelihood, 
as shown by Bosch et al. [2000] and Tarantola [2005]. The 
procedure is as follows:

1. Generate a candidate realization following the joint 
prior sampling chain procedure.

2. Evaluate one data likelihood ratio between the 
candidate and the current realization.

3. Retain the candidate realization for the next likeli-
hood factor test with probability equal to the minimum 
between the likelihood ratio and one.

4. If  the candidate is not retained, accept the current 
realization and go to 1.

5. If the candidate is retained, repeat from 2 following 
with the next likelihood factor. If retained after the last like-
lihood factor test, accept the model realization and go to 1.

Two criteria should be used when ordering the likeli-
hood factors, leaving with preference at the beginning: (1) 
smoother likelihoods in terms of information (larger 
uncertainties) and (2) likelihoods with smaller computa-
tional cost. The former condition (smoothness) allows 
avoiding unwanted barrier problems (i.e., inability to mix 
the sampling across modes separated by very low probabil-
ity zones) in the preliminary likelihood evaluations, which 
can potentially affect the efficiency of the method. In any 
case, the efficiency between various likelihood sequences 
should be tested for evaluation and should be compared 
with the option of single joint likelihood evaluation.

3.5. MAXIMUM POSTERIOR PROBABILITIES 
IN MODEL NETWORKS

Another alternative in realizing a solution to the inverse 
problem is searching for the configuration that maxi-
mizes the posterior probability density (MAP) and calcu-
lating the local posterior covariance matrix. The MAP 
search commonly converges to the nearest mode, although 
there are methods to search for the global MAP. In the 
case of multimodal PDFs a single MAP configuration is 
not a complete description of the problem solution; iden-
tification of major modes and the corresponding local 
MAP configuration may be an alternative. It is common 
in geophysical inference that the data likelihoods are 
complex multimodal functions. Nevertheless, if  the prior 

information is monomodal and highly informative, and 
such that it circumscribes the posterior into the region of 
one of the modes of the data likelihood, the posterior is 
then close to monomodal and the MAP constitutes an 
acceptable description of the problem solution.

A classic method for searching a MAP configuration is 
the Gauss–Newton method [Tarantola, 2005], which 
requires the gradient and the approximate Hessian of the 
natural logarithm of the posterior PDF. By defining the 
objective function, S( ) ln( ( ))m m , we obtain

	 m mexp .S 	 (3.16)

As the exponential is a positive monotonically increas-
ing function, a MAP configuration corresponds to a mini-
mal value of the objective function, and, neglecting 
third‐order derivatives, the posterior local covariance 
matrix is the Hessian of the objective function evaluated at 
the MAP. The model parameters update, m m mn n1 , 
for a step n 1 in the iterative search towards the mMAP 
satisfies

	
Hess m m Grad mS Sn n ,	 (3.17)

where Hess symbolizes the Hessian operator and Grad the 
gradient operator. If multiplying by the prior model 
covariance matrix, Cm

prior , the linear system matrix gets 
dimensionless and more stable for the numerical solution,

 
C Hess m m C Grad mm

prior
m
prior

Curvature

S Sn n

� ���� ����
Steepest descent direction
� ���� ����

.
	 (3.18)

Notice that because the joint objective function is a 
logarithm of the posterior PDF, the factor structure in 
(3.10) transforms straightforwardly to the addition of 
objective function terms, each one accounting for the 
corresponding data likelihood, conditional probability, 
or prior probability.

The posterior model covariance is the inverse of the 
Hessian of the objective function, evaluated at the MAP 
configuration. It can be calculated by inverting the 
Hessian, but inverting the Curvature matrix (i.e., the prod-
uct of the prior model covariance matrix and the Hessian 
of the objective function) and multiplying by the prior 
covariance is commonly a more stable procedure,

	
C C Hess m Cm

posterior
m
prior

MAP m
priorS

1
.	 (3.19)

To work out the linear equations to search the MAP 
configuration, the data likelihood, the conditional PDFs, 
and priors need to be explicitly formulated. I will use a 
simple setting of a two‐layered model and one data layer, 
as shown in Figure 3.7, to illustrate the formulation of the 
linear system of equations (3.18). It corresponds to the 
case of inverting pre‐stack seismic data for joint estimation 
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of the isotropic elastic medium parameters, and primary 
rock parameters in a siliciclastic sedimentary medium, 
describing the total porosity, the shale factor and pore 
fluid phase (water–hydrocarbon) fraction. The formula-
tion is the same for any posterior PDF with a similar 
structure. For describing the isotropic medium, various 
combinations of three parameters (elastic moduli, imped-
ances, mass density, seismic velocities) can be selected; a 
common choice is the mass density and the seismic P and 
S velocities. To be explicit, I will describe the medium by 
specifying primary, m m m mprim vshale porosity saturation{ , , }, and 
secondary, m m m msec P velocity Svelocity density{ , , }, model param-
eters, the joint model space being m m m{ , }prim sec . 
Commonly, these parameters are specified at each point 
over a 3D grid.

The seismic data depends explicitly on the elastic 
medium configuration and parameters associated with 
the seismic survey experiment (source function and geom-
etry). The seismic observations in this problem could be 
travel times (tomography problems), reflection ampli-
tudes (reflectivity inversion), or the full wave field. In any 
of these cases, we can formulate a forward modeling of 
the data, g(msec), based on the seismic wave mechanical 
theory, such that

	 d g m dobs sec ,	 (3.20)

where dobs is the observed data, and Δd are the deviations 
between the observed and the modeled data.

As already explained, rock physics is the natural link 
between the primary and secondary model parameters. 
After calibrating an appropriate rock physics model for 
the elastic parameters using local data if  available, f(mprim), 
we have

	 m f m msec prim sec ,	 (3.21)

where msec are the true medium elastic parameters and 
Δmsec are the deviations between the true and modeled 
elastic parameters.

The posterior PDF in this problem according to what 
has been previously explained is

	 m m m m mprim sec prim dat sec| .L 	 (3.22)

I will model the three factors in the posterior formula-
tion by multivariate Gaussian functions. The first PDF 
describes the prior information on the primary model 
parameters, which could be defined with

	 ( ) expm m m C m mprim prim prim
prior T

prim prim prim
priorc1

1
 ,

	
(3.23)

with mprim
prior being the expected prior primary parameters 

and Cprim the prior covariance matrix; commonly, mprim
prior is 

spatially dependent and previously modeled according to 
the geological stratification and formation horizon infor-
mation. The likelihood function and the conditional rock 

mvshale

mporosity

msaturation

mP velocity

mS velocity

d

Physical rock
properties, msec

Primary rock
properties, mpri

mdensity

Rock physics

Data
modeling

Prior information on
rock parameter
geostatistics

Parameters of the
rock physics
model calibrated
to well data

A
cq

ui
re

d 
an

d 
pr

oc
es

se
d

se
is

m
ic

 d
at

a

σ(m) = ρ(mpri) ρ(msec| mpri) Ldat (msec)

Seismic source 
wavelets

Figure 3.7  Inference network for a hierarchical two‐layered model structure, illustrated with the case of a silici-
clastic sedimentary basin description based on seismic data. Symbols are the same as in previous figures. The 
corresponding structure of the posterior PDF is shown at the bottom.
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physics PDF are formulated by modeling the probability 
of the deviations Δmsec and Δd in (3.20) and (3.21),

	

m m

m f m C m f m
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T
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|
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1

 mm ,
	

(3.24)

with Csec|prim being the covariance matrix of the rock phys-
ics model deviations Δmsec. Similarly, the data likelihood 
function is

	Ldat elas obs sec

T

dat obs secm d g m C d g mexp ,

1

	
(3.25)

with Cdat being the data covariance, encompassing data 
observational and modeling uncertainties. By adding 
exponents of the three modeled factors of the posterior 
PDF, the full objective functions has each of the three 
information components,
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(3.26)

Expressions g(msec) and f(mprim) are in general nonlin-
ear, and hence the search of the model update needs 
successive iterations in the application of the Gauss–
Newton’s method described in expression (3.15). The first 
and second derivatives of  the objective function, as well 
as algebraic simplifications, required to calculate the 
model update are detailed in the work by Bosch [2004]. 
The resulting model update for the secondary model 
parameters satisfies the linear system of equations,

	 A m bsec ,	 (3.27)

with the left‐hand side being

	 A I C FC F G C Gsec| .prim prim
T T

dat
1 	 (3.28)

Above, matrices G and F are the Jacobian matrices of 
g(msec) and f(mprim) correspondingly, and I is the identity 
matrix. The right‐hand side of (27) is

b f m m F m m

C FC F G
prim sec prim

prior
prim

prim prim
T T

sec| CC d g mdat obs sec
1 .

	 (3.29)

After the model update for the secondary parameters is 
calculated, the model update for the primary parameters 
is obtained by [Bosch, 2004]

	
m m m
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prim prim

prior
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prim
T T
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(3.30)

Once (3.27) and (3.30) are calculated, the model param-
eters are jointly updated and a new evaluation of (3.27)–
(3.30) can be obtained by iterating towards proximity of 
the MAP configuration. Commonly, convergence moni-
toring the data residual evolution until substantial reduc-
tion and stabilization.

3.6. Discussion

Once the corresponding posterior probability density 
is defined according to the models involved, the solution 
of the inverse problem relies in generating object out-
comes that summarize the posterior information—that 
is, the combination of the various data likelihoods, con-
ditionals, and prior densities. Two major approaches have 
been described here: (1) sampling object configurations 
in proportion to the posterior PDF and (2) searching 
maximum posterior probability object configurations. 
A  comparison between the two options is a common 
subject of  discussion.

A first point to mention is that the two approaches do 
not provide the same description of the posterior informa-
tion. The sampling approach provides a complete descrip-
tion of the posterior PDF. Theoretically, with a large 
enough set of samples of the model parameters, all mar-
ginals, conditionals, and the joint posterior PDFs can be 
approximated by the sample statistics with arbitrarily small 
deviations. Also, expected values, standard deviations and 
frequency histograms of the modeled object parameters 
can be computed. Hence, the sampling approach produces 
a full solution of the inverse problem. The optimization 
approach, on the other hand, searches for the mode (the 
local MAP configurations) that is the closest to a starting 
search point. It is essentially local, as the model parameter 
space can be always divided in a series of local mode sec-
tors. In the neighborhood of the mode the posterior covar-
iance matrix can be calculated to describe the uncertainties 
and posterior correlations around the mode.

Another known limitation of the MAP configuration 
is that it is usually smooth in physical (3D plus time) 
space, because all the spatially distributed parameters 
align with their posterior expected values. Realizations 
produced from the sampling process better represent the 
true spatial variability of the parameters, and they are 
often more useful when a representation of the spatial 
heterogeneity is relevant. A typical case is for modeling 



44  Integrated Imaging of the Earth

the fluid flow in a permeable medium, where the driving 
flow locations correspond to the large permeability chan-
nels and not to the average permeability [Dubrule, 2003]. 
The MAP configuration commonly underestimates by 
large the fluid flow. This limitation can partly be over-
come by producing posterior simulations centered at the 
MAP with superposed deviations generated according to 
the posterior covariance matrix.

The computational costs involved in the optimization 
and the sampling approaches are highly dependent on the 
specific case and objectives of the inference; a compari-
son requires a case‐by‐case analysis. In general, the num-
ber of iterations involved in the search of the MAP is 
much smaller than the number of model parameters 
(a  few iterations), whereas sampling chains require a 
length (number of realizations) of several times the num-
ber of model parameters. However, the operations 
required in the computation of a single iteration for the 
optimization approach are much larger than the compu-
tations involved in generating one sampling step, and 
they increase faster with the number of model parame-
ters. Direct matrix methods solving linear systems as 
expression (3.17) typically require operations in the order 
between the square and the cube of the number of model 
parameters. Nevertheless, methods that take advantage 
of the sparcity and/or structure of the system (3.17), or 
approximate iterative solvers such as the conjugate gradi-
ents method, decrease this dependency, commonly reach-
ing performances with operations orders beneath the 
square of the number of model parameters. Such numeri-
cal methods are required for the solution of large to very 
large inverse problems with the optimization approach.

Another issue of discussion refers to the various spaces 
associated with the inference: model parameters, mod-
eled object, modeled observations, and data parameters. 
Implicit applications link the model parameter space to 
the model object space, and they also link the modeled 
observation space to the data space. These applications 
are not commonly explicit in the general formulation of 
the inference problems, but need to be accounted to 
model the involved functions and PDFs.

The formulation presented herein relates data and model 
parameters with basis on a combination of multiple mod-
eling processes, described by conditional probability den-
sities and likelihood functions. The basic knowledge to 
establish these links across model components and data 
(physical laws, geostatistical relationships) is not given pri-
marily on the model parameter space but on physical 
space (3D plus time plus modeled matter). For this rea-
son, it is useful to comment on the difference between the 
space of model parameters, which here is given by random 
variables supporting a physical object model, and the 
space of physical modeled objects. A set of object mode-

ling rules, sometimes identified as parameterization rules, 
are required to transform a model parameter outcome to 
a modeled object configuration in physical 3D space and 
in some cases time. These rules commonly involve the 
physical identification of the parameters and the construc-
tion of their outcome in space accordingly. Sometimes, 
they are straightforward, like in the case of assigning 
property values to a Euclidean three‐dimensional grid, but 
in other cases can be more elaborated. Examples are 
parameters being coefficients of polynomials defining 
geological body surfaces, or when the model elements are 
defined over curved coordinate systems.

A realization of an object model configuration can be 
regarded as the process that combines (1) drawing an out-
come of the random variables (in model parameter space) 
according to the correspondent PDF and (2) passing 
these parameters through the object modeling engine to 
end up with a configuration of the object in the modeled 
physical (3D and time) space. The modeled object con-
figuration is the result of this realization process. Once 
the object modeling rules have been established and 
behave as a bijective function, each outcome of the model 
parameters is associated with a correspondent outcome 
of the modeled object configuration, and vice versa. An 
outcome of the model parameters implicitly indicates a 
realization of a modeled object configuration; hence they 
are sometimes treated as the same entity.

A similar distinction applies for the observation of 
experiments made on the studied object (geophysical sur-
veys, well‐log measurements) and the data, conceived as 
parameters that describe the observations. The data also 
requires a series of configuration rules to have physical 
meaning (in 3D space, time, and observation nature). 
Also, commonly the data used in the inverse problems 
involves processing from raw (lower level) field or instru-
mental data. The understanding of the differences 
between model parameters, modeled object, experimen-
tal observation, and data is useful for the formulation of 
the relations between data and model parameters and the 
complete description of the related uncertainties. In par-
ticular, uncertainties should involve the various modeling 
processes that are present.

The issue of modeling parameter probability densities is 
closely related with the object modeling transform, as dif-
ferent parameterizations produce different PDFs for the 
same state of information on the modeled object. In par-
ticular, homogeneous (i.e., null‐information) parameter 
probability densities are straightforwardly related to the 
parameterization [see Tarantola, 2005]. The object and 
observational modeling transforms are implicit compo-
nents in the corresponding conditionals and likelihoods, 
as well as in the geophysical (3.20) and petrophysical (3.21) 
functions used to model the objective function terms.
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3.7. CONCLUSIONS

Inference problems in Earth sciences involve the inte-
gration of  multiple types of  knowledge, observations, 
and information, which ultimately is done by the expert 
and the scientific community at large by continuous 
processes of  partial analysis and synthesis. To support 
these processes, methods for quantitative inference in 
complex models and multiple data are in progress. The 
inference formulation is done via the definition of  prob-
ability densities over parameter spaces that model the 
object or phenomenon to be described. To model the 
posterior state of  information, after a set of  multiple 
observations have been included, the data likelihood 
functions can be factorized across surveys and observa-
tional methods, assuming independence of  the observed 
data uncertainties.

To couple components of the object model that are 
responsible for diverse observations, the knowledge about 
inner relationships across the object model parameters 
need to be used as part of the prior information, entering 
as conditional probability densities between compo-
nents of the object model. The identification of relevant 
dependencies and acceptable independencies across 
model components is an important issue for the perti-
nence of the model and the reliability of the inference. 
The presentation of these dependencies via direct acyclic 
graphs is useful, allowing a straightforward formulation 
of the posterior PDF.

Once the posterior PDF is modeled, the generation of 
the object posterior configurations can follow two lines: 
drawing multiple realizations from the posterior PDF 
(sampling approach) or searching maximum posterior 
PDF configurations and their local covariance, a proce-
dure that commonly has only local validity depending on 
the modes of the PDF.

The theoretical capabilities of these methods are unlim-
ited, in a mathematical sense, depending for their applica-
tion on the computational capacities and the ability to 
reliably describe the object/phenomenon laws and inner 
relationships across their components.

Acknowledgments

The author acknowledges the Universidad Central de 
Venezuela, the Institute de Physique du Globe de Paris, 
and the University of  Cambridge, which housed differ-
ent periods of  the author’s work in the subjects devel-
oped in the chapter. Special acknowledgment is due to 
Albert Tarantola, professor and friend, who promoted 
the interest in inverse problems and their probabilistic 
treatment in professional and academic Earth science 
community.

REFERENCES

Alpak, F., C. Torres‐Vedin, and T. Habashy (2008), Estimation 
of in‐situ petrophysical properties from wireline formation 
tester and induction logging measurements: A joint inversion 
approach, J. Petroleum Sci. Eng., 63, 1–17.

Bhattacharjya, D., and Mukerji, T. (2006), Using influence dia-
grams to analyze decisions in 4D seismic reservoir monitoring, 
The Leading Edge, 25, 1236–1239.

Bosch, M. (1999), Lithologic tomography: From plural geo-
physical data to lithology estimation, J. Geophys. Res., 104, 
749–766.

Bosch, M. (2004), The optimization approach to lithological 
tomography: Combining seismic data and petrophysics for 
porosity prediction, Geophysics, 69, 1272–1282, doi: 
10.1190/1.1801944.

Bosch, M., C. Barnes, and K. Mosegaard (2000), Multi‐step 
samplers for improving efficiency in probabilisitic geo-
physical inference, in Methods and Aplications of Inversion, 
Springer, New York.

Bosch, M., L. Cara, J. Rodrigues, A. Navarro, and M. Díaz 
(2007), A Monte Carlo approach to the joint estimation of 
reservoir and elastic parameters from seismic amplitudes, 
Geophysics, 72(6), O29–O39, doi: 10.1190/1.2783766.

Bosch, M., C. Carvajal, J. Rodrigues, A. Torres, M. Aldana, and 
J. Sierra (2009), Petrophysical seismic inversion conditioned 
to well‐log data: Methods and application to a gas reservoir, 
Geophysics, 74(2), O1–O15, doi: 10.1190/1.3043796.

Bosch, M., Guillen, A., and Ledru, P. (2001), Lithologic tomog-
raphy: An application to geophysical data from the Cadomian 
belt of northern Brittany, France, Techtonophysics, 331, 
197–227.

Bosch, M., R. Meza, R. Jimenez, and A. Honig (2004), Joint 
gravity and magnetic inversion in 3D using Monte Carlo 
methods, Geophysics, 71, G153–G156, doi:10.1190/1.2209952.

Bosch, M., T. Mukerji, and E. Gonzalez (2010), Seismic inver-
sion for reservoir properties combining statistical rock physics 
and geostatistics: A review, Geophysics, 75, A165–A176.

Bourne, J. H. (1993), Use of magnetic susceptibility, density 
and modal mineral data as a guide to composition of granitic 
plutons, Math. Geol., 25, 357–375.

Buland, A., and O. Kolbjomsen (2012), Bayesian inversion of 
CSEM and magnetotelluric data: Geophysics, 77, E33–E42.

Caers J., S. Srinivasan, and A. Journel (2000), Geostatistical 
quantification of geological information for a fluvial‐type 
North Sea reservoir, SPE Reservoir Eval. Eng., 3, 457–467.

Chen, J., and G. M. Hoversten (2012), Joint inversion of marine 
seismic AVA and CSEM data using statistical rock‐physics 
models and Markov random fields, Geophysics, 77, R65–R80.

Chiles, J.‐P., and P. Delfiner (2009), Geostatistics: Modeling 
Spatial Uncertainty, John Wiley & Sons, Hoboken, NJ.

Connolly, J. A. D. (2005), Computation of phase equilibria by 
linear programming tool for geodynamic modeling and an 
application to subduction zone decarbonation, Earth Planet. 
Sci. Lett, 236, 524.

Dadashpour, M, D. Echeverria‐Ciaurri, J. Kleppe, and 
M. Landro (2009), Porosity and permeability estimation by 



46  Integrated Imaging of the Earth

integration of production and time‐lapse near and far offset 
seismic data: J. Geophys. Eng., 6, 325–344, doi: 10.1088/ 
1742‐2132/6/4/001.

Deutsch, C. R., and A. G. Journel (1992), GSLIB, Geostatistical 
Software Library and User’s Guide, Oxford University Press, 
New York, 340 pages.

Deustch, C. V., and L. Wang (1996), Hierarchical object based 
stochastic modeling of fluvial reservoirs, Math. Geol., 28, 
857–880.

Doetsch, J., N. Linde, I. Coscia, S. Greenhalgh, and A. Green 
(2010), Zonation for 3D aquifer characterization based on 
joint inversion of mutimethod crosshole geophysical data, 
Geophysics, G53–G64.

Dubrule, O. (2003), Geostatistics for Seismic Data Integration in 
Earth Models, SEG, New York.

Eidsvik J., P. Avseth, H. More, T. Mukerji, and G. Mavko 
(2004), Stochastic reservoir characterization using prestack 
seismic data, Geophysics, 69, 978–993.

Gallardo, L., and M. Meju (2004), Joint two‐dimensional DC 
resistivity and seismic travel‐time inversion with cross‐gradients 
constraints, J. Geophys. Res.: Solid Earth, 109, B03311.

Gallardo, L, M. A. Perez, and E. Gomez (2003), A versatile 
algorithm for joint 3D inversión of gravity and magnetic 
data, Geophysics, 68, 949–959.

Gelfand, A. E., and A. F. M. Smith (1990), Sampling‐based 
approaches to calculating marginal densities, J. Am. Stat. 
Assoc., 85, 398–409.

Geyer, C. J. (1992), Practical Markov chain Monte Carlo, Stat. 
Sci., 7, 473–551.

González, E., T. Mukerji, and G. Mavko (2008), Seismic inver-
sion combining rock physics and multiple‐point geostatistics, 
Geophysics, 73, R11–R21.

Grana, D. (2014), Probabilistic approach to rock physics 
modeling, Geophysics, 79, D123–D143.

Grana, D., and E. Della Rossa (2010), Probabilistic petrophysical‐
properties estimation integrating statistical rock physics with 
seismic inversion, Geophysics, 75, O21–O37.

Grana, D., T. Mukerji, J. Dvorkin, and G. Mavko (2012), 
Stochastic inversion of facies from seismic data based on 
sequential simulations and probability perturbation method, 
Geophysics, 77, M53–M72.

Griffiths, T, C. Kemp, and J. Tenenbaum (2008), Bayesian mod-
els of cognition, in The Cambridge Handbook of Computational 
Psychology, R. Sun, ed., Cambridge University Press, New 
York.

Guillen, A., P. Calcagno, G. Courrioux, A. Joly, and P. Ledru 
(2007), Geological modelling from field data and geological 
knowledge, Part II—Modeling validation using gravity and 
magnetic data inversion, Phys. Earth Planetary Interiors, 171, 
doi::10.1016/j.pepi.2008.06.014.

Haber, E., and D. Oldenburg (1997), Joint inversion: A struc-
tural approach, Inverse Problems, 13, 63–77.

Hacker, B. R., G. A. Abers, and S. M. Peacock (2003), 
Subduction factory 1. Theoretical mineralogy, densities, seis-
mic wave speeds and H2O contents, J. Geophys. Res., 108, 
doi:10.1029/2001JB001127.

Hilterman, F. J. (2001), Seismic Amplitude Interpretation, SEG, 
New York.

Holden, L., R. Hauge, O. Skare, A. Skorstad (1998), Modeling 
of fluvial reservoirs with object models, Math. Geol., 30, 
473–496.

Huang, X. (2001), Integrating Time‐Lapse Seismic with 
Production Data: A Tool for Reservoir Engineering, The 
Leading Edge, New York.

Khan, A., and J. A. D. Connolly (2008), Constraining the 
composition and thermal state of  Mars from inversion 
of geophysical data, J. Geophys. Res., 113, E7003.

Khan, A., J. A. D. Connolly, J. Maclennan, and K. Mosegaard 
(2006), Joint inversion of seismic and gravity data for lunar 
composition and thermal state, Geophys. J. Int., 168, 
243–258.

Khan, A., J. A. D. Connolly, and S. R. Taylor (2008), Inversion 
of seismic and geodetic data for the major element chemistry 
and temperature of the Earth’s mantle, J. Geophys. Res., 113, 
B9308.

Larsen A., M. Ulvmoen, H. Omre, and A. Buland (2006), 
Bayesian lithology/fluid prediction and simulation on the 
basis of a Markov‐chain prior model, Geophysics, 71, 
R69–R78.

Linde, N., J. Chen, M. Kowalsky, and S. Hubbard (2006a), 
Hydrogeophysical parameter estimation approaches for field 
scale characterization, In Applied Hydrogeophysics, H. 
Verrecken, A. Binley, G. Cassiani, A. Revil, and K. Titov, 
eds., Springer, New York.

Linde, N., A. Binley, A. Tryggvason, L. Pedersen, and A. Revil 
(2006b), Improved hydrogeophysical characterization using 
joint inversion of cross‐hole electrical resistance and ground‐
penetrating radar traveltime data, Water Resources Res., 42, 
W12404.

Lines, L., A. Schultz, and S. Treitel (1988), Cooperative inver-
sion of geophysical data, Geophysics, 53, 8–20.

Liu, S. J. (1998), Metropolized independent sampling with com-
parison to rejection sampling and importance sampling, Stat. 
Comput., 6, 1113–1119.

Martinelli, G., Eidsvik, J., Sinding‐Larsen, R., Rekstad, S., 
and Mukerji, T. (2013), Building Bayesian networks from 
basin‐modelling scenarios for improved geological decision 
making, Petroleum Geosci., 19(3), 289–304.

Mavko, G., and T. Mukerji (1998), A rock physics strategy for 
quantifying uncertainty in common hydrocarbon indicators, 
Geophysics, 63, 1997–2008.

Mavko, G., T. Mukerji, and J. Dvorkin (2003), The Rock Physics 
Handbook, Cambridge University Press, New York.

Mezghani, M., A. Fornel, V. Langlais, and N. Lucet (2004), 
History Matching and Quantitative Use of 4D Seismic 
Data for an Improved Reservoir Characterization, Society of 
Petroleum Engineers, Houston, TX, SPE‐90420‐MS, doi: 
10.2118/90420.

Mosegaard, K. (2011), Quest for consistency, symmetry and 
simplicity—The legacy of Albert Tarantola, Geophysics, 76, 
W51–W61.

Mosegaard K., and A. Tarantola (1995), Monte Carlo sampling 
of solutions to inverse problems, J. Geophys. Res., 100, 
12431–12447.

Mosegaard K., and A. Tarantola (2002), Probabilistic approach 
to inverse problems, in International Handbook of Earthquake 



Inference Networks in Earth Models with Multiple Components and Data  47

and Engineering Seismology, W. Lee, H. Kanamori, P. 
Jennings, and C. Kisslinger, eds., Academic Press, New York.

Mukerji, T, A. Jorstad, P. Avseth, and J. R. Granli (2001), 
Mapping lithofacies and pore–fluid probabilities in a North 
Sea reservoir: Seismic inversions and statistical rock physics, 
Geophysics, 66, 988–1001.

Pearl, J. (1986), Fusion, propagation and structuring in belief  
networks, Artifi. Intell., 29, 241–288.

Pearl, J. (1994), Causal diagrams for empirical research, 
Biometrika, 82, 669–688.

Rimstad K., P. Avseth, and H. Omre (2012), Hierarchical 
Bayesian lithology/fluid prediction: A North Sea case study, 
Geophysics, 77, B69–B85.

Smith, A. F., and G. O. Roberts (1993), Bayesian computations 
via the Gibbs sampler and related Markov chain Monte 
Carlo methods, J. Royal Stat. Soc., 55, 3–23.

Spikes, K., T. Mukerji, and G. Mavko (2007), Probabilistic seis-
mic inversion on rock‐physics models, Geophysics, R87–R97.

Strebelle, S. (2002), Conditional simulation of complex geologi-
cal structures using multiple‐point statistics, Math. Geol., 
34, 1–22.

Suman, A., and T. Mukerji (2013), Sensitivity study of rock‐
physics parameters for modeling time‐lapse seismic response 
of Norne field, Geophysics, 78, D511–D523.

Tarantola, A. (2005), Inverse Problem Theory and Methods for 
Model Parameter Estimation, SIAM, Philadelphia.

Thulasiraman, K., and M. Swamy (1992), Graphs: Theory and 
Algorithms, John Wiley & Sons, New York.

Tiberi, C., M. Diament, J. Deverchere, C. Petit‐Mariani, V. 
Mikhailov, S. Tikhostsky, and U. Achauer (2003), Deep 
structure of the Baikal rift zone by joint inversion of gravity 
and seismology, J. Geophys. Res. Solid Earth, 108, 2133.

Tierney, L. (1994), Markov‐chains for exploring posterior 
distributions, Ann. Stat., 22, 1702–1762.

Torres‐Verdin, C., A. Revil, M. Oristaglio and T. Mukerji 
(2012), Multiphysics borehole geophysical measurements, 
formation evaluation, petrophysics and rock physics—
Introduction, Geophysics, 77, WA1–WA2.

Ulvmoen M., H. Omre, and A. Buland (2010), Improved reso-
lution in Bayesian lithology/fluid inversion from prestack 
seismic data and well observations, Part 2—Real case study, 
Geophysics, 75, B73–B82.


