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The optimization approach to lithological tomography: Combining
seismic data and petrophysics for porosity prediction

Miguel Bosch?

ABSTRACT

Least-squares model optimization methods are com-
monly used to estimate physical media properties by fit-
ting geophysical data with nonlinear models. I extend
this formulation to joint estimation of physical prop-
erties and lithological description of the media. Incor-
poration of petrophysical information within the inver-
sion scheme provides the coupling between lithology and
media physics by describing the geostatistical relation
between them. The resulting procedure adjusts itera-
tively the joint model to simultaneously fit geophysical
data, the petrophysical statistical medium description,
and prior information on the lithology, following equa-
tions derived for the Newton’s optimization method. Al-
though more calculations are required to incorporate
the additional information and estimate the model up-
date, the algebraic system of linearized equations can
be transformed appropriately to remain within the same
dimensions of the conventional inverse formulation. In
the particular case when the petrophysical transform is
linear (i.e., the function of lithological parameters that
provides the expected values of the physical parame-
ters), the lithological inversion equations are equivalent
to the corresponding equations of a conventional inver-
sion followed with the inverse petrophysical transform.
I illustrate the methodology with synthetic examples of
porosity-impedance estimation from zero offset seismic
data, using Wyllie’s transform to construct the statistical
relationship between porosity and impedance. When the
porosity range of the test models is on the nonlinear part
of the petrophysical transform, the lithological inversion
performs significantly better than the conventional in-
version. When the porosity range is on an almost linear
part of the transform, the performances are equivalent
for both approaches.

INTRODUCTION

The objective of geophysical exploration is the inference of
media structure and lithology, using physical phenomena to “il-
luminate” the underground media. In this manner, geophysical
techniques provide valuable information to be combined with
information from geology, petrophysics, and other earth sci-
ences specialties, the correct integration across disciplines be-
ing a key aspect in the technical success of exploration projects.

The importance of integration is commonly emphasized
in many activities related to exploration, such as interpreta-
tion, data management, and visualization. However, inversion
methods in geophysics do not exploit the multidisciplinary
character of the information generated in exploration projects.
The common inversion approach explains geophysical data
with amodel based only on physics. I propose extending this ap-
proach to explain multidisciplinary data from a joint lithology-
structure-physics model. This work focuses on the formulation
of inverse problems techniques incorporating within the earth
model medium properties indirectly related to geophysical ob-
servations (such as lithology indicators, porosity, or composi-
tion) and estimating them from the data.

Benefits of such an integrated approach are multifold. Geo-
physical phenomena, in particular seismic wave propagation,
have significant nonlinear dependence on media properties,
and the data distribution is spatially restricted. The incorpo-
ration of complementary information from petrophysics, or
geology, is crucial to focus geophysical data inversion in the
realistic region of the model space. It reduces the region of
search, helping convergence, reliability, and precision of the
estimation. On the other hand, geophysical data constraints
on a joint lithological-structural-physical model directly pro-
duce estimations of the lithology and structure, which are of
major interest.

A general formulation of the lithological inversion prob-
lem under a Monte Carlo approach has been described by
Bosch (1999). In this work, lithological inversion from geophys-
ical data was formulated for a categorical description of the
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lithology (rock types) and solved using sampling (Monte Carlo)
techniques. Applications of this technique have been shown in
work by Bosch et al. (2001) and Bosch and McGaughey (2001)
using gravity and magnetic data. Similarly, Monte Carlo meth-
ods have been used to incorporate petrophysical information
(Mosegaard et al., 1997; Torres-Verdin et al., 1999) in seismic
data inversion.

However, Monte Carlo methods require relatively fast com-
putations in order to solve the forward problem a large number
of times. To perform inversions that demand large computa-
tions in the solution of the forward problem (as it is the case
for seismic and electromagnetic wave propagation), optimiza-
tion approaches are convenient. The present work describes
the solution of the lithological inversion problem following an
optimization approach. The objective is to provide the appro-
priate linearized system of equations for the model update,
both for the physical and for the lithological model compo-
nents. Additionally, the formulation of this method for con-
tinuous parameters describing the lithology allows the explicit
incorporation of information on properties such as porosity,
lithology indicators, or composition within the model and their
estimation from the constraints provided by the geophysical
data.

THE LITHOLOGICAL INVERSION PROBLEM

Because this is a problem of combining information, the
framework of statistical inference is convenient for this formu-
lation. To describe the information, I use probability density
functions defined over the model and data parameter spaces.
The posterior probability density describes the result of com-
bining prior and data information (see Tarantola, 1987):

o(m) = cL(m)p(m), 1)

with o (m) being the posterior density, p(m) the prior density,
L (m) the likelihood function, ¢ a normalization constant,and m
the array of model parameters. A list of mathematical symbols
used along this work is shown in Table 1.

In the present formulation, the model parameters are a
composite, m = {mMppys, My, }, describing a lithological-physical
model of the earth media. The first component are model pa-
rameters for description of the physical property field (i.e., elas-
tic parameters, mass density, magnetic parameters, or other
appropriate according to the geophysical method used). The
second component are model parameters for description of
lithology and/or structure in a wide sense, which are indirectly
involved in the physical response of the media. Examples are
lithology indicators, mineral composition, porosity, or other pa-
rameters relevant to the exploration target and area, and addi-
tionally being significantly related with the physical behavior
of the media. Figure 1 illustrates components of the problem
in this integrated approach.

Under the combined model space, the joint prior probabil-
ity can be calculated by the formula of conditional probabili-
ties, p(m) = 7 (Mphys Mo ) Pgeo (Mgeo ), the first factor being the
conditional probability describing dependency of the physical
parameters from lithological parameters, and the second fac-
tor being the probability density describing the prior informa-
tion on the lithological parameters. The geophysical likelihood
function depends only on the medium parameters directly re-
lated to the calculated geophysical data (i.e., explicit in physical

law formulation), L (m) = L (myyy,). Hence, the posterior den-
sity, expression 1, takes the form

U(mphy57 mgeo) =C L(mphys) s (mphys| mgeo) pgeo(mgeo) .
—_———

geophysics petrophysics geology

2

See Bosch (1999) for extended discussion of the equation 2.
A distance in the lithological model space can be defined with
mg., being continuous parameters. This makes a difference in

Table 1. Basic symbols used to formulate the lithological
inversion method.

Symbol Description

Mppys Physical model parameter array
mg, Lithological model parameter array
My prior Prior lithological model

m Joint model parameter array

dops Observed geophysical data

dcalc Calculated data

The joint posterior probability density
The prior probability density on the
lithological field
The probability density of the physical
property field conditioned by the
lithological field
The geophysical likelihood function
Normalization constants
Function solving the geophysical
forward problem
Function providing the mean model physical
parameters conditioned by the model
lithological parameters
The half sum of squares (objective function)
The gradient of g
The gradient of f
Data covariance matrix
seo Prior covariance matrix
for the lithological model parameters
Prior covariance matrix for the physical
model parameters conditioned by the
lithological model parameters
m Joint prior model covariance matrix
Identity matrix
Null matrix
Gradient operator
Hessian operator
m The estimated model update for
iteration n + 1

g (mphys 5 mgeo)
P (mgeo

T (mphys |mgeo)
L (mphys)
C,C,C
g(mphys)

f(m,,)

OQHC)U)

CthS\geo

>IN0

Restricted inverse problem

Lithological Physical Geophysical
model > maodel " data

Integrated inverse problem
e ]

Figure 1. Scheme of the information components in this for-
mulation and comparison with the inverse problem restricted
to physical property description. Parameter spaces are shown
with boxes, and black arrows indicate links between spaces in
the forward direction.
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the case in which lithology is described with categories (types
of rocks), where a definition of distance is not straightforward.
I will use throughout a quadratic norm in data and model pa-
rameter spaces for the definition of the factors in the poste-
rior density (expression 2). In the lithological model space, this
norm is [[mye, I>= mge(,‘C;Clomgeo , with C,e,, an appropriate co-
variance matrix describing variability and correlation between
lithological parameters. Using this norm and the distance from
a prior most probable model, prior probabilities are defined
in the lithological model space with the multivariate Gaussian
density

pgeo(mgeo) =0 eXP[— l/2(lngeo - lngeoprior)tcgeo_1
X (mgeo - mgeoprior)L (3)

with ¢; an appropriate normalization constant. Normalization
constants will be implied afterwards because they are relevant
to the solution to be derived below.

I define the norm in the data space by ||d||> = dthld with Cy
being the data covariance matrix that describes second-order
statistics on the data uncertainties. To describe the likelihood
of the physical property field according to the distance between
calculated and observed data, I use the function

L(mphys) = exp[— 1/Z(g('nphys) - dobs)t
x Cgl(g(mphyS) — dobs)], 4)

with g : m,py — d, being the function solving the geophysical
forward problem, dcu = g(mphys) -

The most interesting factor of the posterior density, expres-
sion 2, is the conditional density term because it incorporates
the dependency between physical medium properties and the
lithological description of the medium, which I describe with a
Gaussian model. I consider a function, f : mye, — My , to de-
scribe the centroid of the distribution, and the matrix Cphygigeo
to describe covariances of the deviations from the centroid:

n(mphys|mgeo) =G eXP[— 1/2(lnphys - f(mgeo))t
x C;}}yslgeo(mph)’s - f(mgCO))]’ (5)

with the corresponding norm defined by ||mphys||2=
m, C!

phys ™ phys\ge'omphys' . .
By inserting each one of the factors above in the posterior

density (expression 2), the later is given by o (mphys, Myeo) =C
exp[ — 8], with the half-sum of squares Sbeing

S = 1/2 (g(myphys) — dobS)tcc_ll (g(mphys) — dops)

geophysics

+1/ (mphys - f(mgeO))tC;hlys\geo(mphyS - f(mgeo))

petrophysics

+1/5 (mgeo — Mgeo prior)tcg_elo(mgeo - mgeoprior) . (6)

geology

Notice that the inverse covariance matrices weight the con-
tribution of each type of information to the total sum of squares.
Above, g(myyy) and f(my, ), are nonlinear functions that incor-
porate complexity on the shape of the posterior density. The
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posterior density is not a Gaussian function due to this nonlin-
earity. The functions g(mypys) and f(my,) are here considered
well behaved enough to have derivatives.

In many cases, parameters describing lithology, like poros-
ity and composition, are positive and lognormally distributed,
instead of normally distributed. If the parameters are strongly
constrained or far from the origin, the difference between the
two probability densities may not be relevant. But in cases
where the variability is large or the parameters are evaluated
near the origin, the difference is significant, and the lognormal
model should be used. To comply with a lognormal distribu-
tion, the actual model lithological parameters my, should be
the logarithm of the property (composition, porosity, etc.). The
same comment is valid for the parameters describing the phys-
ical media properties myys, if their distribution is lognormal.

Figure 2 shows the type of relationship exploited in this for-
mulation, linking physical media behavior to rock properties
in earth media. The figure shows examples of statistical re-
lationship between lithological and physical properties for a
general case (Figure 2a), the relation between mass density
and silica weight content in crustal rocks based on the work
by Christensen and Mooney (1995)(Figure 2b), and the re-
lation between compressional velocity and porosity in sand-
stones based in data from Han et al. (1986)(Figure 2c). Figure
2 refers to overall behavior of the property. Actual property
fields are defined in space and comply not only with overall re-
lations as shown by Figure 2, but with relations describing the
spatial continuity as well. This is described in the nondiagonal
terms of the matrices Cphysjgecoand Cgeo to be defined with the
appropriate covariance functions [see Isaaks and Srivastava
(1989) for a review of covariance function models].

SOLUTION BY OPTIMIZATION

The terms in the objective function (expression 6) demand
proximity between the calculated and observed data, proximity
of physical media properties with the corresponding expecta-
tions according to media lithology, and proximity of the lithol-
ogy with the prior lithological model. Minimizing the objec-
tive function (maximizing the posterior density) achieves the
goal of finding models that jointly explain geophysical, petro-
physical, and geological information.  use the gradient and the
Hessian of the objective function in the optimization algorithm
to iteratively approach a model that maximizes the posterior
probability density.

Taking partial derivatives of the objective function, we end
up with the formulas for the gradients (Appendix A) ,

Vgeos = Cgelo(mgeo — mgeoprior)
- Ftcp:}}ys\geo (mPhYS - f(mgeo)), (7)
VphysS = C;}}yslgeo(mphys — f(mgeo))

+ Gthl(g(mphys) - dobs)- (8)

In expressions 7 and 8; G = (9g/dmyhys) and F = (9f/0my,, )
are the gradient of g(myy) and f(m,,) correspondingly. The
Vo and Vs operators represent differentiation respect to
the lithological model parameters (3/9my,) and the physical
model parameters (9/9myppys), correspondingly.
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Figure 2. Examples of information linking lithological and
physical media properties for (a) a general case, (b) depen-
dency of the mass density with the logarithm of the silica weight
content, and (c) dependency of the compressional velocity with
the logarithm of the porosity in sandstones. Gray tones indicate
values of the conditional probability density, and the solid line
r(epres)e]nts the center of the conditional density [the function
f(mg,)].

I obtain the Hessian of the objective function by differen-
tiating again (Appendix A). Another important component
required for the optimization is the covariance matrix in the
joint model space, which is obtained from Cgelo, C;h]ys‘ geor ANA F
defined above (see Appendix A). Below, I derive expressions
for acommon optimization approach: Newton’s method. Other
common approaches can be set up from these basic formulas

with appropriate modification.

The normal equations (Newton’s method)

At minimal values of the objective function, the gradient
is null. This condition is used to obtain the normal equa-
tions for the lithological inversion problem. By expanding
the gradient of S, VS[m,;]~H(S)[m,]Am+ Vm,], and
equating the left term to zero, the set of normal equa-
tions, H(S)[m,]Am= —V S m,], are obtained. In the lat-
ter expression, Am is the estimated step in the model
space, Am=m,,; —m, , in order to minimize the function
S, H(S)[my] is the Hessian of Sevaluated at the current model,
and V §m,] the gradient of Sevaluated at the current model.
Solving Am in the linear system of equations produces the
model update.

Ileft multiply the normal equations by the model covariance
matrix, producing the equations

CrH(S)[m;] Am =
curvature

—CnVSm,] )
S ——

steepest descent direction

where the left matrix is the curvature of the objective function,
and the right term is the direction of steepest descent. After
inserting in the curvature term the expressions for the Hessian
and the joint covariance matrix (Appendix A), the system takes
the following triangular structure:

I CooF'G'C;'G Amgeo
0 I+ (Cphysjgeo + FCoeoF)G'C;' G | \ Amppys
=-CnVS. (10)

The size of the joint linear system in the normal equations is
reduced to two smaller linear systems, which is convenient for
solving the system of equations. The second line of equation 10
provides calculation of Amyy,y , which can be used then to solve
for Amg,with the linear equations of the first line. Making
the substitutions for the right side with the expression for the
steepest descent direction (Appendix A) and the joint model
covariance, the model update for the physical model parame-
ters gives AAmy,ys = b, with

A =T+ (Cppysjgeo + FCoeo F)G'C;'G, (1)

and b = f(my,) — mghys + F(Mgeo prior — Mgeo) + (Cphysigeo +
FCyoF')G'C; ' (dops — g(m, ) -

This linear system of equations can be solved by conventional
algorithms (e.g., Gauss-Newton triangularization method, bi-
conjugated gradients). For the selection of the method, it
should be taken into account that the left matrix is in general
not symmetric. Notice that the dimensions of this system are
the same as for a conventional inversion (hence, computations
are not significantly larger), although the formulation incor-
porates information about the dependency between lithology
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and physical media properties, and the statistics of the physical
and lithological properties.

For the update in the lithological model space, the equation
obtained from the first line of the joint linear system, (expres-
sion 10) is

Anlgeo = Mlgeo prior — mrgleo
+ CyeoF' G'Cy ' (dobs — g(mpy,) — GAmpnys). (12)

Expressions 11 and 12 provide the model update for an iter-
ation in the optimization. As it is a nonlinear problem g(my, ),
G and F are dependent on the iteration. The iterative proce-

dure can be summarized as follows:

1) Calculate g(my, ), f(mg,,), G and F for the current model n.

2) Solve the system of equations for the physical model update
(expression 11).

3) Calculate the lithological mode update (formula 12).

4) Update the lithological and physical model and return to

step 1.

Repeat until convergence in reduction of the objective func-
tion (expression 6).

COMPARISON WITH
NONLITHOLOGICAL INVERSION

Expressions for the lithological inversion presented in the
previous subsections agree with the formulation restricted to
the physical dimensions of the model, with certain simplifica-
tions. A comparison can be made between the physical com-
ponent of the model update in the inversion approach here de-
veloped and the correspondent model update for the inversion
based exclusively on physical information. The normal equa-
tions for the latter problem can be obtained with the general
formula (Tarantola, 1987)

t—1 _ . n
(I+ CpnysG'Cy G) Amphys = Myphys prior — My

+ Cphys Gtcgl (dobs - g(mghys))’ (13)

with the model parameters describing the physical property
field.

This formula is equivalent to the formula obtained here for
the physical model update (expression 11) after simplification
with the following three assumptions:

1) The dependency between physical and lithological proper-
ties, described by f(my, ), is linear.

2) The prior physical property model is the image of the prior
lithological model by the myhys prior = f(Mgeo prior)-

3) The model covariance matrix above is taken as

Cphys = Cphyslgeo + cheoFt- (14)

The third condition on the covariance matrix is to be ex-
pected as it is shown in Appendix A that the matrix is the
marginal in the physical model space of the joint covariance
matrix for the lithological inversion formulation.

It is important to highlight that because the dependency be-
tween lithology and physical properties is in general nonlin-
ear, the gradient of the lithology-physical property transform
(matrix F), depends on the current model, mg, . Hence, Cppys

would be actually variable throughout the inversion. This de-
pendency is not taken into account in a conventional formu-
lation restricted to physical parameter space, in which Cppys is
not iteration dependent.

NUMERICAL EXAMPLE OF POROSITY
PREDICTION FROM SEISMIC AMPLITUDES

Iillustrate the lithological inversion methodology with a syn-
thetic example of joint porosity-impedance estimation from
zero-offset reflection seismic data. The earth model is 1D, hor-
izontally layered, with layers of constant impedance and poros-
ity. Seismic data and the earth model are both described in two-
way traveltime. The seismic data are simulated by convolving a
source function with the reflectivity series calculated from the
impedance model, taking into account amplitude changes due
to transmisivity. For simplicity, neither multiple reflections nor
attenuation are not included in these calculations.

I use Wyllie’s formula (Wyllie et al., 1956) to construct
the statistical relationship between impedance and porosity in
these tests. With the product of Wyllie’s transforms for density
and P-wave velocity,

Z((b) = Viatrix lomatrix[1 - d)(l - )Oﬂuid/pmatrix)]/
[1 - ¢(1 - Vmatrix/vﬂuid)]v (15)

where Z is the impedance; ¢ is the porosity defined as the ratio
of pore volume to total volume; and, payid » Pmatrix > Viuid, and
Vmatrix are the mass densities and P-wave velocities for the rock
fluid and matrix. This choice of transform is not intrinsic to the
method, a formula that suits impedance-porosity data from the
particular study area could be used in its place.

Conventional porosity, as in equation 15, is not a convenient
parameter for model simulation and least-squares inversion.
It is not Gaussian distributed because it is restricted to values
from zero to one. I use here an appropriate transformation of
the porosity as parameter for definition of probability densities,
simulation, and inversion: the logarithm of the ratio between
pore volume and matrix volume. However, for most plots and
results, I show conventional porosity for easier interpretation.

This logarithmic porosity is related to conventional porosity
by ¢* =In[¢/(1 - ¢)]., or. inversely, ¢ = exp[¢*]/(1 +exp[#*]).
Hence, Wyllie’s transform of the logarithmic porosity is

Z(¢*) - Vmatrix Iomatrix(1 + eXp[¢*]pﬂuid/pmatriX)/
(1 + eXp[¢*]Vmatrix/Vﬂuid)~ (16)

With this parameterization, the geological model pa-
rameters are the logarithmic porosities for the successive
horizontal layers, mg., = (97, ¢5,...,#%), and the physical
model parameters are the corresponding layer impedances,
Mynhys = (Z1, Z,, ..., Zn). The function that relates the geo-
logical parameters to the prior mean physical parameters is
f(mgeo) = (Z(¢7), Z(93), - .., Z(#},)), Wyllie’s transform of the
logarithmic porosity.

I complete the prior statistical model defining covariance
matrices, Cgeo and Cppysigeo » Which describe the deviations from
the mean and the time correlation for logarithmic porosity
and impedance, respectively. Both logarithmic porosity and
impedances are time related in these tests, following a Gaussian
covariance function. For the following tests, I use a covariance
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time range of 40 ms for porosity and impedance deviations, and
astandard deviation of 5 x 10° Kgs~'m~2 for the impedance de-
viation from the Wyllie’s transform of the porosity. The range
of porosities and impedances in the models vary in the tests (as
will be shown) in order to consider two types of ranges: (1) the
nonlinear part of the petrophysical transform, and (2) an al-
most linear part of the petrophysical transform. I use common
values for matrix and fluid parameters of the Wyllie’s transform
5600 m/s, 1587 m/s, 2600 kg/m?, and 1000 kg/m? for Vinarix, Vituids
Pmatrix> and ppyia ;respectively (Hilterman, 2001).

The “true” porosity model in Figure 3 shows a porosity time
series generated from the prior statistical model (expression
2) using a conventional multivariate Gaussian simulation tech-
nique. The porosity series is transformed to impedance us-
ing Wyllie’s formula, and then multivariate Gaussian devia-
tions are added (expression 5). The zero-offset seismic reflec-
tion amplitudes are calculated from the impedance model with
the convolutional process. This simulated porosity-impedance
profile and the corresponding simulated seismic zero-offset
trace are regarded as the “true” medium parameters and seis-
mic data for testing the inversion technique. Figure 4 shows
the porosity-impedance crossplots corresponding to the “true”
model shown in Figure 3, superposed on the Wyllie’s transform.
Layer porosities and impedances are distributed on the non-
linear range of the petrophysical transform.

I perform calculations for the lithological inversion (i.e., the
joint porosity-impedance inversion) using Newton’s method
(expressions 11-12). Matrix F, composed of derivatives of the
impedance with respect to logarithmic porosity, is obtained
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by differentiating expression 16. Matrix G is the Frechet’s
derivatives through the reflectivity-transmisivity calculation
from impedances and the convolution with the source. Also,
I implement a conventional two-step inversion procedure for
comparison. This consists of nonlithological least-squares in-
version of impedance using Newton’s method (expression 13),
followed with the inverse of the petrophysical transform to
map the estimated impedance model to porosity. Prior infor-
mation on the impedance is defined to meet the equivalency
criteria discussed in the previous section: using the marginal
covariance of the impedance (expression 14) and taking the
impedance prior mean value from the Wyllie’s transform of
the porosity prior mean value.

Figure 3 shows the results of the joint and two-step inversions
for the data corresponding to the “true” model. The joint inver-
sion is significantly closer to the “true” porosity and impedance
model than the two-step inversion. Figure 5 shows crossplots
of predicted and “true” values of porosity and impedance, indi-
cating better prediction for the lithological inversion technique
than for the conventional step-wise technique. I use two quan-
titative criteria for comparing fitness to the targeted (“true”)
model: the correlation of the predicted-estimated crossplots
and the rms error. With both indicators, the joint lithological
inversion performed better.

Keeping the same type of statistical parameters and porosity
ranges, but using different random number sequences, 20 inde-
pendent porosity-impedance simulations were generated and
the corresponding zero-offset seismic trace inverted. Litholog-
ical joint inversion systematically performed better than the

0.4 Seismic amplitude 0.4 Seismic amplitude residual
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-0.0—\'-/\[\/\ + -0, .
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Figure 3. Inversion test showing a “true” porosity-impedance model and the corresponding
seismic data (gray sections), the porosity and impedance estimated with the lithological inver-
sion and the corresponding seismic data (continuous lines), and the porosity and impedance
estimated with the two-step inversion and the corresponding seismic data (dashed lines).
Differences between “true” and estimated parameters are shown at the bottom for the litho-
logical (continuous lines) and the two-step inversion (dashed lines). Vpor = pore volume;
Vmat = matrix volume.
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two-step inversion for all 20 cases. Table 2 summarizes results
for the case shown in Figure 3 and average results for the 20
independent cases.

Figure 5 shows another advantage of using lithological inver-
sion. Lithological inversion guarentees that predicted porosi-
ties are always positive, whereas the conventional step-wise

Median

Impedance (106 Kg/s m?2 )

6 - porosity RN 3
5 0.06 : i
4 L
3 i
2 i
1 : : . .
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15 1 | | | |
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Logaritmic porosity (In(Vpor/Vmat))

Figure 4. Layer impedance-logarithmic porosity and
impedance-porosity crossplots corresponding to the “true”
model shown in Figure 3. The line shows the Wyllie’s petro-
physical transform. Model parameters span on a non-linear
part of the petrophysical transform from logarithmic porosity
to impedance. Vpor = pore volume; Vmat = matrix volume.

procedure usually estimate some low porosity values as nega-
tive porosities. Negative values for porosity occur in many of
the 20 independent cases inverted with the two-step procedure.
The “true” model in Figure 6 shows a porosity-impedance
simulation with a different porosity range and median poros-
ity, all other statistical parameters are the same as for the
“true” model shown in Figure 3. Figure 7 shows the porosity-
impedance crossplots of the “true” model. In this case, layer
parameters are distributed on the linear part of the petrophys-
ical transform with absence of low porosities (below 0.05).
In this situation, the improvement of the lithological inver-
sion is not significant compared with the conventional step-
wise inversion; both methods are equivalent. This is shown in
Figure 6, where the porosity and impedance profiles estimated
with the joint and two-step inversion are superposed in most
parts. Table 3 shows similar results on correlation between pre-
dicted and true parameters, and the rms prediction error.

DISCUSSION

In this work, both in theory and numerical tests, I assume sim-
plifications that are substantial to least-squares optimization.
Basically, I consider monomodality of the probability density
of physical property parameter conditioned by the lithological
parameters, and Gaussian deviations for data errors, physical
property deviates from the petrophysical transform, and litho-
logical deviates from the prior model. Quasi-linear behavior of
the geophysical forward function and the petrophysical trans-
form [g(m) and f(m) in formulas of previous sections] is also
an assumption. These assumptions are significant; nevertheless,
least-squares optimization is a useful tool that works in many
situations. Gaussianity of deviates can be corrected to some
point with convenient transforms. However, multimodality is
a more difficult problem for optimization techniques. Monte
Carlo methods provide general solution to inverse problems
without requiring the assumptions of least-squares optimiza-
tion. See Bosch (1999) and Bosch et al. (2001) for discussion
on Monte Carlo implementation of lithological inversion.

Another aspect important to mention is that lithological in-
version provides a method for jointly inverting multiple geo-
physical data sets (Bosch, 1999; Bosch et al., 2001) such as
seismic, electrical, gravity, etc. The reason is that the same
lithological parameters can be related to several physical rock
properties (e.g., impedance, resistivity, density, etc.) providing
the required coupling for the multiple data inversion. Because
of the statistical links across multiple physical properties and
lithology, different geophysical data contribute with comple-
mentary information towards the same lithological model pa-
rameters. The equations for the least-squares multiple data
lithological inversion are the same as in this work with ap-
propriate partitioning of data and model spaces.

Table 2. Prediction rms error and correlation between predicted and “true” values for cases at the nonlinear range of the

petrophysical transform.

Joint inversion

Two-step inversion

Joint inversion Two-step inversion

Description (case in Figure 3)  (case in Figure 3) (20 cases average) (20 cases average)
Predicted-true porosity correlation 0.94 0.90 0.94 0.90
Predicted-true impedance correlation 0.92 0.83 0.92 0.82
Porosity prediction rms error 0.032 0.043 0.038 0.048
Impedance prediction rms error ( Kg/ m s?) 0.96 x10° 1.19 x10° 1.13 x10° 1.29 %106
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In the numerical examples on porosity prediction from seis-
mic amplitudes, the petrophysical transform I use relating loga-
rithmic porosity and impedance is almost linear for medium to
large logarithmic porosities. For this petrophysical transform,
results show that if low porosities (below 0.05) are not present
in the sequence of layers, a two-step inversion for impedance
and porosity is as good as the joint inversion. If low porosities
are present in the sequence of layers, the joint inversion pro-
vides a better estimation for porosities and impedances than
the two-step inversion.

The multiplicity, volume, and quality of information involved
in exploration and interpretation progressively increase, creat-
ing a technological context in which advanced tomographic
techniques are required to jointly exploit geophysical, petro-
physical, and geological information. Within the view of model
statistical estimation, it is possible to formulate the inverse
problem taking into account all the information, extending the
concept of geophysical inversion.

Within this approach, it is essential to define a common earth
model. It is a model that jointly describes in space physical
properties and properties directly related to rock structure and
lithology. The convenient lithological description depends on

the geology of the area in exploration, targets, and available
geophysical techniques. For exploration of sedimentary basins,
lithology indicators and porosity are good candidates. In massif
areas, silica weight content is a good candidate, grading crustal
rocks from basic to acid.

Another aspect of the selection of the lithological property
to represent in the model is the influence of the property on
the physical behavior of the medium (i.e., the indirect influence
in the collected geophysical data). If we want to invert seismic
data within this integrated approach, the lithological property
described within the model should be statistically related to the
elastic parameters. This can be verified in the formula for the
lithological model update (expression 12). If there is no corre-
lation between the physical and lithological parameters, the F
matrix is be zero, producing the trivial estimate Mgeo = Mgeo prior
. In this case, the geophysical data does not add anything to the
previous knowledge of the lithological property.

In this formulation, the lithological medium description is
not limited to a single property, it can be more than one. The
lithological parameters can be, for example, a combination of a
lithology indicator and porosity, My, = {myj, my,, }, depending
on the available information and the specific targets.

Table 3. Prediction rms error and correlation between predicted and “true” values for cases at the linear range of the
petrophysical transform.

Joint inversion Two-step inversion Joint inversion Two-step inversion

Description (case in Figure 6)  (case in Figure 6) (20 cases average) (20 cases average)
Predicted-true porosity correlation 0.86 0.85 0.80 0.80
Predicted-true impedance correlation 0.87 0.85 0.79 0.77
Porosity prediction rms error 0.040 0.039 0.048 0.048
Impedance prediction rms error ( Kg/m s?) 0.88 x 10° 0.87 x 10° 1.08 x 10° 1.08 x 10°
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CONCLUSIONS

Using the approach of lithological inversion, I extend least-
squares optimization techniques commonly used in geophysi-
cal inversion to produce joint estimation of lithology and phys-
ical media properties . The principle is to optimize a composed
earth model that jointly describes media physics and lithology
in order to explain geophysical observations and fit geostatisti-
cal relations between physical media properties and lithology.
The model updates comprehend modifications to the physical
property field and the lithological property field.

The formulation considers nonlinear dependence of the cal-
culated geophysical data from physical media properties, and
nonlinear dependence of the expected physical media prop-
erties from lithology media properties. I present the solution
to model updates, following iterative linearization of the prob-
lem, for the common Newton’s optimization method. From this
method, extension to others can be done.

The results obtained in this work show that lithological
least-squares inversion performs better in predicting both ge-
ological parameters and physical parameters than the conven-
tional two-step inversion approach. The latter consists of least-
squares inversion to estimate the physical medium parame-
ters followed by the petrophysical inverse transform. When
the petrophysical transform is linear the two approaches are
equivalent, as shown both in theory and synthetic tests.
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APPENDIX A

FORMULAS FOR THE GRADIENT, HESSIAN,
STEEPEST DESCENT DIRECTION, AND
CURVATURE OF THE OBJECTIVE FUNCTION

Gradient of the objective function

The terms in expression 6 of the total sum of squares are
notedas S=S§ + S + S, with

S

]/2||g(mphys) - dobs”2
1/2(g(mphys) - dobs)tC(;] (g(mphys) - dobs)a
(A-1)

S = 1/2||lnphys - f(mgeo)ﬁ
1/2(lnphys - f(mgeo))tcghlys|geo(mphys - f(mgeo))7

(A-2)

S = 1/2||mgco - lngcoprior”2
-1
= 1/Z(Ingeo - mgeoprior)tcgeo(mgeo - mgeo prior)'
(A-3)

Gradients with respect to physical-property description pa-
rameters mypys and lithology description parameters my, are,
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Figure 6. Inversion test showing a “true” porosity-impedance model and corresponding seis-
mic data (gray sections), the porosity and impedance estimated with the lithological inver-
sion and the corresponding seismic data (continuous lines), and the porosity and impedance
estimated with the two-step inversion and the seismic corresponding data (dashed lines).
Differences between true and estimated parameters are shown at the bottom for the joint
(continuous lines) and two-step (dashed lines) inversion.
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for each term separately,

VoS =0,

ViohysS = G'Cy 1(g(mphys) — dobs),
VoS = _F[C;}fyslgeo(mph}’s — f(m,,)),
ViohysS = Cl:hlys\geo(mphys — f(m,,)),
VoS = Cyoy (Mgeo — Myeo prior )
VonysS =0,

with G = (3g/0myphy) and F = (0h/9m,, ) being the gradient of
g(mpnys) and f(m,, ), respectively. Adding the three terms in
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Figure 7. Layer impedance-logarithmic porosity and
impedance-porosity crossplots corresponding to the “true”
model shown in Figure 6. The line shows the Wyllie’s petro-
physical transform from logarithmic porosity to impedance,
and porosity to impedance. Model parameters span on an
almost linear part of the petrophysical transform in this case.

the gradient of the objective function gives

-1
Vgeos = Cgeo(mgeo — Mgeo prior)

- F ;l}yslgeo(mphys - f(mgeo))’ (A'4)
ViphysS = C;l}yslgeo (mphys — f(myge,))
+ G'Cy' (g(mpnys) — dobs). (A-5)

The complete gradient of S is the combination of equations

A-4 and A-5:
vs— (V) | (A6)

Vohys
Approximation of the Hessian of the objective function

The Hessian of S is needed for the formulation of the
Newton’s method of optimization in which it enters into the
calculation of the model update and posterior covariance. As
usual in Newton’s method, I consider that the current point
and the updated point in the model space are close enough
that linear approximation of functions f(mg,) and g(mppy,) is
good, and the second—order terms in the functions expansion
can be neglected. Terms in the Hessian of S involving second
derivatives of f(m,,) and g(myys) are neglected below. This is
called a quasi-linear approximation of the Hessian of S.

The Hessian is the operator of the second derivatives of S
respect to the model parameters:

Vgeovgeos VphyngeoS
Vgeo VphysS Vphys Vphys S
(A-T)

H = (3*S/dm'om!) = (

Differentiating the expressions for the gradient, the four com-
ponents are

VeeoVegeoS=Cot +FCL F,  (A8)

geo phys|geo™ *
Vohys VieoS = =FCpp (cos (A-9)
Vgeo VphysS = —c;;yslgeoF, (A-10)
Vs Vphys S = Coplieo + G'C7' G, (A-11)

Model covariance matrix

We previously provided the covariance Cy, in the litholog-
ical model space, and the conditional covariance Cppysjgeo - 1
calculate the covariance in the joint model space in the fol-
lowing way. The probability density in the joint model space
is

p(m) = 7 (Mppys [Mgeo ) Pgeo (Mgeo ) (A-12)

By substitution of equations 3 and 5, p(m) = czexp[Syrior], With
Sprior = 1/2(Mphys — f(mgeO))tC;}}yﬂgeo(mphys — f(my,))
+1/2(Mygeo — Mgeo prior)' Cge (Mgeo — Mgeo prior)-

(A-13)

The joint model inverse covariance matrix C;! is the Hessian

of equation A-13, which can be obtained by differentiating two
times equation A-13,

-1 t—1 t—1
Cr:ll _ (Cgeo + ljlcphyslgeoF —F Sphyslgeo) ) (A-14)
~ConysigeoF Conysieeo



1282

Notice that the only difference between the Hessian of the
objective function in the previous section is the data term in-
volving matrices G and Cy. The joint model covariance is the
inverse of equation A-14, given by

C CgeoF
geo geo
Cm = ’

(A-15)
FCgeo cheoFt + Cphys\geo

which can be verified by making either the right or the left
product C,,C;! =C;'C,, =L
Curvature of the objective function

The curvature of the objective function (the matrix in the left
term of expression 9) is given by C,,, H(S), factors obtained in
previous sections. A quick way to form a compact expression
for the product is by expressing the Hessian of S in terms of Cyy,,

0
H(S) =C,' +

(A-16)
0 G'C;'G

as shown in the previous section. Then, the curvature is
Curvature = C,,H(S)
Cyeo CyeoF! o 0
FCyo FCyeoF' + Cpnysigeo/ \0 G'C;'G

=1+

I C..oFIG'C;'G
= £ d (A-17)
0 I+ (Cphysigeo + FCoeoF)G'Cy'G

Steepest descent direction

The right side of expression 10 is the steepest descent direc-
tion. It is given by —C,, V'S, each factor having been obtained
in the previous sections:

dyieep = —CnVS=Cp(-VYS)

Cgeo CgeoFt
FCgeo FCgeoFt + Cphys\geo

- -1
Cgelo (mgeo prior — mgeo) —F Cphys lgeo (f(mgeo) - mphys)

C;hlys\geo (f(mgeo) - mphys) +Gtcgl(dobs - g(mphys))
(A-18)

Taking the product, canceling opposite terms, and regrouping
makes the left side of equation A-18

dsteep =

Mgeo prior — Mgeo + CgeoFTG[CE] (dobs — g(mphys))
F )

(mgco prior — Mgeo) + f(mgeo) — mppy + (cheuF‘ + Cphys\geo)clcgl (dops — g(mphys)
(A-19)
Where f(mgy,) is linear, the second line in express

A-19 can be further simplified by making the substitution
F(mgeo prior — Myeo) = f(Myeq) — f(Mgeo prior) and canceling terms:

dsleep =
Mgeo prior — Mgeo + CgeoFthC‘;l (dobs - g(mphys))
f(mgeo prior) - Inphys"‘(cheoFl + Cphyslgeu)Gthl (dobs - g(mphys)) .

(A-20)
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