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S U M M A R Y
We present a new 2-D traveltime tomography method for the inversion of densely sampled
seismic streamer data. This method was especially designed for the efficient inversion of long-
offset multichannel data. A layer–interface model is used to fit ray-traced traveltime data to
observed seismic data. The solution of the forward problem is based on initial-value ray tracing
in a triangulated grid with a linear interpolation of the squared slowness. We implement an
adaptive model parametrization based on ray density, which allows for smaller velocity cells
with subsequent iteration steps. We solve the inverse problem using an iterative linearized
joint inversion of reflection and refraction data for interface and velocity structures. Adaptive
smoothing regularization is implemented in the form of a priori model covariances. As the
cell sizes decrease with increasing iteration numbers, the model covariance ranges are reduced,
allowing for more detail to emerge in the model. We demonstrate the algorithm’s ability to
invert successfully a realistic crustal velocity structure in a synthetic model. Several adaptive
and non-adaptive model parametrizations are tested. The joint interface and velocity inversion
of real long-offset reflection and refraction traveltime data is presented as a second example.
We demonstrate that our results are in good agreement with independently derived velocity
models.

Key words: controlled-source seismology, inversion, ray tracing, reflection seismology,
refraction seismology, tomography, traveltime.

1 I N T RO D U C T I O N

Numerous techniques are in use to extract velocity information
from seismic reflection data, such as semblance velocity analy-
sis, refraction-slope measurements, and constant-velocity stacking
(Yilmaz 1987; Sheriff & Geldart 1995). In recent years a more
quantitative inversion approach has been used to extract velocity
information from seismic data. Two types of seismic inversion are
commonly used today: traveltime inversion (e.g. Phillips & Fehler
1991; Zelt & Barton 1998; Hobro et al. 2003) and full-waveform
inversion techniques (e.g. Pratt et al. 1996; Zeev et al. 2001; Shipp
& Singh 2002). In tomographic traveltime inversion, also referred
to as traveltime tomography, seismic data are reduced to a number
of traveltime picks corresponding to the arrival times of certain seis-
mic phases. These traveltime values are inverted by automatically
comparing them to synthetic data generated from a test model. This
model may then be iteratively updated to reduce the data misfit by
solving the non-linear inverse problem in linearized steps. The most
commonly used forward modelling method to create this synthetic
traveltime data is ray tracing.

A more holistic, but computationally more expensive, inversion
technique is the waveform inversion method (Kormendi & Dietrich
1991). Its goal is to match real and synthetic wavefields, and con-
sequently it has the potential to resolve much finer structures than
inversion methods that are based on traveltimes alone (Pratt et al.
2002; Freudenreich 2002). Most full-waveform inversion schemes
are based on steepest-descent or conjugate-gradient methods. There-
fore, they require a starting model that is close to the real solution,
so the inversion process is able to converge to the global minimum
of the misfit function, as demonstrated by Failly et al. (1993). Trav-
eltime inversion techniques may provide general constraints for the
choice of such starting models. Furthermore, they are a good means
of obtaining velocity models that can be used for pre-stack depth
migration, especially in regions of complex geology, where standard
velocity analysis fails (Yilmaz 1987).

The aim of traveltime tomography is to obtain a model for which
the misfit between calculated and observed traveltime data is min-
imal (Scales & Smith 1997). Various approaches exist to search
for the global minimum of the misfit function. One problem is
that the solution might converge to a local minimum. Monte Carlo
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methods are used if no analytical expressions for the relation be-
tween data and model parameters are available, or where the lin-
earization of the problem fails (Mosegaard & Tarantola 1995). In the
present case we use a linearized inversion, which assumes a linear
relationship between small changes that are applied to the model
and the corresponding change to the traveltime. Then the inversion
proceeds in small steps towards the final solution. It is important
to start as close as possible to the final solution in order to have a
problem that is probably as linear as possible (Tarantola 1987).

Seismic inversion techniques involving densely sampled data are
challenging due to the sheer amount of data. Multichannel streamer
data sets acquired with two-ship survey geometries cover offset
ranges of 18–30 km and contain valuable near- and far-offset re-
flection and refraction events. Since the seismic image quality in-
creases with denser sampling, as many data as possible should
be included in the analysis. Lutter et al. (1994) presented a high-
resolution traveltime inversion of internal details of the Columbia
River Basalt Group, including the basalt–sediment interface and the
deeper sediment–basement interface. Even though this experiment
involved more than 5000 observed traveltimes, the number of trav-
eltime data obtained from marine seismic surveys exceeds this value
by orders of magnitude. Therefore, in order to be able to invert ma-
rine seismic streamer data without discarding entire shot records, a
new efficient traveltime inversion algorithm is needed.

Despite the range of existing traveltime tomography algorithms
that are available to academic research it was considered necessary
to develop a new traveltime tomography algorithm that is able to
deal efficiently with the large amounts of data involved in high-
resolution seismic surveys. The new algorithm should possess the
following features compared with currently available algorithms:

(i) flexible model parametrization based on triangulated velocity
grids (Hale & Cohen 1991), in contrast to the restriction of defining
velocities only along interfaces, as in the case of RAYINVR (Zelt &
Smith 1992), for example;

(ii) the option of adaptive parametrization, which can easily be
implemented in triangulated grids (Böhm et al. 2000), in contrast to
regular blocky models;

(iii) efficient ray tracing based on the shooting method, in contrast
to solving the two-point problem, as performed by, for example,
Jive3D (Hobro 1999);

(iv) the ability to invert other than first arrivals, in contrast to
FAST (Zelt & Barton 1998), for instance.

In this paper we describe first the formulation of the new trav-
eltime tomography algorithm in respect to model parametrization
and the solution of the forward and inverse problems. Secondly, a
synthetic inversion test is presented, demonstrating the successful
recovery of the long-wavelength structure of the initial model. Fi-
nally, we present the application of the algorithm to a real seismic
data set from the North East Atlantic.

2 T O M O G R A P H Y A P P ROA C H

Our approach to model parametrization, ray tracing and inversion
is based on the method of McCaughey & Singh (1997) and Hobro
et al. (2003), but allows for irregular parametrized velocity grids
based on Delaunay triangulation. Since the geometry of very long-
offset marine seismic reflection surveys can be regarded as 2-D, the
algorithm was developed for 2-D applications.

2.1 Model parametrization

The appropriateness of model parametrization and display of results
is crucial to the tomographic problem (Kissling et al. 2001). The

choice of parametrization constrains the possible solutions for both
the forward and inverse problems. In general, models used in travel-
time tomography are either over- (Hobro et al. 2003) or under- (Zelt
& Smith 1992) parametrized relative to the number of data used.
Here we are proposing to use an optimal model parametrization.

The algorithm presented here is based on Delaunay triangulated
grids with velocities defined at the triangle vertices. Within each tri-
angle the slowness squared is interpolated linearly. Models using the
slowness square to define velocity distributions have been referred
to as sloth models (Muir & Dellinger 1985). Such sloth models allow
for a fast analytic solution of the ray-tracing equations while avoid-
ing discontinuities in the ray path that would occur when using cells
of constant velocity (Červený 2001). Regularly and irregularly dis-
tributed velocity nodes are gridded using the efficiently formulated
sweepline algorithm (Fortune 1987) for triangulation.

In triangulated grids the ability to determine whether a triangle
contains a given point is needed. Shirley (1992) described such a
method based on barycentric coordinates. Given the coordinates of
a point P, the corresponding triangle can be found by testing all
triangles in the grid. We use the far more efficient walking triangle
algorithm (Sambridge et al. 1995) to locate the triangle that contains
P. The efficiency can be further increased by subdividing the model
space using spatial division tables.

Having identified the triangle that contains a certain point we
need to be able to ascertain the physical properties, such as seismic
velocity, slowness, or squared slowness, at that point. Since these
properties are defined only at the node points of the triangulated grid
we need to interpolate them within the grid. A linear interpolation
was chosen because a linear gradient of the slowness squared allows
for an analytic solution of the forward problem (Appendix A). In
addition, linear interpolation does not alter the velocities at the grid
points, therefore allowing a better control over the velocity field.
In contrast, a B-spline interpolation could lead to an interpolated
velocity field that does not coincide with the node values and non-
analytic solutions of the forward problem.

It is desirable that the parameter density should be modifiable
depending on the regions of the model that are illuminated by rays.
Such an adaptive parametrization would not only avoid instability
in the inversion but also increase the efficiency of the algorithm.
Vesnaver (1994) and Böhm & Vesnaver (1996) describe an inver-
sion algorithm that reduces the non-uniqueness of the traveltime
inversion result by adapting the grid. The shape of grid cells and
the number of grid nodes are modified while the null-space energy
is used as a data-independent measure for the inversion reliability.
Faletič (1997) presents a self-adaptive global seismic tomography
method based on gradient-driven mesh refinement through cell bi-
section, and highlights the problem of optimizing both the number
of parameters employed and the model fit, suggesting a combination
of regular and irregular refinements of the model. The data-driven
approach proposed by Cox & Verschuur (2001) seems to overcome
this problem by applying a stable and well-determined updating
procedure that makes use of the a posteriori covariance. In their
approach the local adjustment of the Delaunay triangulated grid
depends on the variance of the model parameters after model op-
timization in the inversion step. Starting with a small number of
parameters the model will behave in such a way that it will grow
towards its final solution (Cox & Verschuur 2001). Here, an adap-
tive gridding procedure that increases the number of velocity node
points in the model, based on the ray density, was implemented.

One method to increase the node density of an initially regu-
lar grid of equilateral triangles would be through triangle subdivi-
sion, by placing an additional grid point in the triangle’s centroid.
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Figure 1. Subdivision of equilateral triangles. (a) Triangles with and with-
out intersecting rays. (b) Subdivision of the triangle with ray coverage into
four likewise equilateral triangles. The length of the new triangle sides is half
that of the original triangle. The neighbouring triangle without intersecting
rays is subdivided into two right-angled triangles.

However, the resulting triangles would not be equilateral, and after
few recursive subdivisions the grid would consist of many narrow
triangles. Such a subdivision is undesirable since the intrinsic nu-
merical errors of the ray tracing become more important if a ray has
to pass through a large number of narrow triangles. Therefore, the
following method for subdivision of a regular triangulated grid, in
which most of the subtriangles remain equilateral, has been imple-
mented. New grid points are inserted at the median of each trian-
gle side, for all triangles that are intersected by one or more rays
(Fig. 1a). Triangles without any crossing rays, but located next to
triangles with intersecting rays, are subdivided into two right-angled
triangles. All other triangles in the grid remain unchanged. At sec-
ondary subdivision steps, it is possible that the bordering triangles
could become less regular, since rays at the edge of the ray fan might
intersect non-equilateral triangles.

Interfaces between velocity grids representing the various lay-
ers are implemented in the model parametrization of the present
inversion algorithm. Each interface is defined by at least two in-
terface nodes, with horizontal position, depth and depth gradient
assigned. Currently only one depth gradient is attached to each in-
terface node, but the algorithm may be extended in the future to
include separate gradients on either side of the node, allowing sharp
kinks in the interface. Between interface nodes the shape of the in-
terface is interpolated using a cubic Hermite interpolation that is
based on the coordinate information of the two interface nodes and
the two corresponding interface depth gradients (Appendix B). A
simple horizontal interface may be defined by two interface nodes.

After the creation of an interface, the interface node density is
increased automatically by interpolation at regular intervals. This
operation guarantees the minimum density of interface nodes that
is required by the interface inversion algorithm. This value can be
tuned as required in order to avoid over- or under-parametrized in-
terfaces and to account for the local resolution and ray coverage.
Interface nodes on different interfaces can possess the same coor-
dinate values, so that it is possible to define layers that pinch out, or
layers of zero thickness. Furthermore, it is possible to assign addi-
tional attributes to the interface nodes which would flag parts of an
interface active, while other segments of the interface are inactive;
on the basis of such labelling, it would be possible to construct in-
terfaces that extend only over parts of the model, so that reflections
are generated only when a ray hits an active segment of an interface.

Since the position of interfaces will be allowed to change during
the inversion process it is important that the grids extend over a
range that is large enough to accommodate these changes. Within the
model each layer is defined by its Delaunay triangulated grid and an
upper and lower interface. After the allocation of the corresponding
grids and interfaces, every triangle that is intersected by an interface
is marked with a flag. This procedure permits efficient ray tracing,

since each ray will only look out for a ray–interface intersection in
the case where it enters a marked triangle. Otherwise it will proceed
rapidly to the next triangle along its path. This flagging procedure is
repeated every time the interfaces are changed during the inversion
process.

2.2 Solving the forward problem

The forward problem of the inversion is solved using efficient an-
alytical ray tracing in a medium with a linear gradient of slowness
squared, as formulated by Farra (1990) and Červený (2001). In-
stead of solving the two-point problem, an initial-value ray-tracing
scheme with traveltime interpolation is implemented. It is possi-
ble to increase the ray density at low cost such that at least one
ray emerges between each receiver pair, wherever this is physically
possible.

In 2-D media the square of the slowness u at the position x may
be defined as

u2(x) = u2
0 + �� · (x − x0), (1)

with

Γ = ∇u2 (2)

as the gradient of the squared slowness and u0 as the slowness at
location x0.

The ray path within a triangle and its corresponding traveltime
can be described analytically using the expressions for Γ and u0. The
ray-tracing equations can be expressed according to Farra (1990) as

p(τ ) = 1

2
��(τ − τ0) + p(τ0), (3)

and

x(τ ) = 1

4
��(τ − τ0)2 + (τ − τ0)p(τ0) + x(τ0), (4)

where p describes the slowness of the ray, the ray parameter, τ is a
sampling variable that increases monotonically along the ray, τ 0 is
defined as the initial value of τ when the ray enters a triangle, and
x is the ray position. The total traveltime T can be computed as

T (τ ) = T (τ0) + [
u2

0 + �� · x(τ0)
]
(τ − τ0)

+1

2
�� · p(τ0)(τ − τ0)2 + 1

12
��2(τ − τ0)3. (5)

Given the position and direction of the ray as it enters a triangle, the
algorithm computes the ray exit position, the ray direction in this
position, and the traveltime through this triangle. Furthermore, the
ability to determine the exact location of the ray inside the triangle
at an arbitrary point along the ray trajectory is given by eq. (4). This
feature is needed for the location of intersections of the ray with
possible interfaces or receiver arrays.

When the ray enters a triangle that contains an interface or
streamer segment, the analytical ray-tracing procedure is interrupted
and the ray–interface or ray–streamer intersection calculated numer-
ically. Beginning from the point at which the ray enters a triangle,
the method progresses along the ray in small steps and evaluates
whether the test point is still on the same side of the interface as
the starting point. For the case of a ray–streamer intersection, the
algorithm tests the ray position against the constant streamer depth.
The stepping procedure is stopped if the interface or receiver ar-
ray is crossed. Two distinct algorithms are implemented to find the
ray–interface or ray–streamer intersections within the remaining in-
terval: Newton–Raphson and bi-section. Bi-section means that the
remaining interval of the ray path within the triangle is divided into
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two equally long sections and a test is applied to determine whether
the half-way point is still on the same side of the interface. This pro-
cedure is applied successively until the solution is found within the
limits of the predefined tolerance range. The convergence of the bi-
section method is linear within the required accuracy and therefore
it is not the most efficient way to calculate the intersection (Press
et al. 1992).

As a more efficient procedure the Newton–Raphson algorithm is
employed, which has a quadratic convergence at best (Press et al.
1992). The method works by extrapolating the local derivative,
which is the tangent to the ray, to find the next estimate of the
ray–interface intersection. Subsequent test points along the ray are
found at the crossing between the ray and the normal to the in-
terface in the estimated solution. This procedure is repeated until
the ray–interface intersection is located within the given tolerance,
which may be tuned according to the problem. In the case of local
extremes in the ray path, it is possible that the solution diverges. For
such situations, a counter is implemented into the Newton–Raphson
algorithm that causes the iteration loop to break after a predefined
number of iterations, and to fall back to the slower but safer bi-
section algorithm.

Snell’s law for reflection and refraction at an interface is imple-
mented as a vector formulation, avoiding trigonometric functions.
For the reflection case, the direction of the reflected ray R is given
by

R = I − 2(I · N)N, (6)

with I as the slowness vector of the incident ray and N as the normal
to the interface. In the transmission case, the direction T of the
refracted ray is obtained by solving the expression

T = I + xN (7)

for x. By splitting eq. (7) into components that are perpendicular
and parallel to the interface and making use of the fact that |T| =
u2, with u2 being the squared slowness of the second medium at the
intersection position, eq. (7) can be transformed into the quadratic
polynomial

x2 + 2x(I · N) + |I|2 − u2 = 0. (8)

There are potentially two solutions to eq. (8), but only one relates to
a ray propagating in the second medium. The correct solution may
be selected by comparing the signs of the components normal to the
interface:

(I.N)(T.N) > 0. (9)

If no real roots exist for eq. (8), total internal reflection occurs and
no transmitted events are possible.

Each individual ray is constructed of single segments that describe
the path and traveltime of the ray within each of the triangles the ray
passes through. These ray segments are grouped together to form
macro ray segments for every layer. All macro ray segments together
form the entire ray from its source to its end position. The traveltime
of the ray is calculated by summation of the individual ray-segment
contributions. Within each ray segment the traveltime is computed
analytically and the position x at which the ray leaves a triangle
and its local direction p are passed on as entry parameters to the
consecutive triangle.

2.3 Formulating the inversion

In order to be able to minimize the misfit between modelled and
observed traveltimes, a measure is needed to link the change in

traveltime to a change in model parameter. This relation has to be
established for every model parameter. The linearizing assumption
of the inversion requires this change in model parameter to be small.
To obtain this relation, one possible approach is to solve the two-
point problem for a large number of rays, and applying small model
perturbations for each model parameter in turn. Thus, the effect of
a change in the model can be linked to a change in traveltime of
affected rays. However, this method is extremely inefficient. The
model parametrization and the ray-tracing approach chosen in this
work allow for an efficient analytical computation of the so-called
Fréchet derivatives of traveltime with respect to model parameters.
In Appendix C we show how the Fréchet derivatives are obtained
for the velocity and interface parameters. The Fréchet derivative
computation is limited to those model parameters that affect the
traveltime of a ray. These parameters are all the velocity nodes that
belong to triangles that are intersected by the rays, and the interface
nodes that have a ray intersecting or reflecting from a part of the in-
terface next to them. Changes applied to any other model parameter
would not affect the traveltime of this ray, and therefore the corre-
sponding Fréchet derivatives are set to zero. The procedure followed
is to step along every ray and to compute the Fréchet derivatives for
all the model parameters that are encountered.

2.3.1 The optimization function

The solution of the inverse problem involves a search over the model
space for the most plausible model m that is able to explain the
recorded data d. In the case of traveltime tomography these data are
picked traveltimes. A starting model is chosen for the inversion that
is likely to be close to the real subsurface velocity distribution. Rays
are traced in this model in order to obtain a first set of synthetic
traveltimes. The comparison of these computed traveltimes with the
actually measured data results in the data misfit, or data residual

�d = dobs − dm, (10)

with dobs as the observed, and dm as the modelled data. The number
of parameters used in the computation is much too large to search
the complete model space for the model that minimizes this residual
best. Under the assumption that small changes of the model �m
result in only small changes in the data �d, so that the new model
remains in the region of linearity that surrounds the previous model,
a linear relationship may be established (Indira & Gupta 1998):

�d ≈ G�m, (11)

where G is the matrix that contains the partial derivatives of the
data with respect to the model parameters, the Fréchet derivatives.
The size of G is the number of data times the number of model
parameters. Since any particular ray intersects just a few triangles
in our model, only a small number of model parameters affect this
ray. Therefore, most elements of the matrix G will be zero. Such a
sparse matrix can be stored efficiently as described by Press et al.
(1992).

Here, the following approach is taken to calculate the model up-
date �m. In order to reduce the misfit r between the observed data
dobs and the modelled data dm an objective function S is formulated:

S = (dobs − dm︸ ︷︷ ︸
r

)TC−1
d (dobs − dm︸ ︷︷ ︸

r

) + �, (12)

where C−1
d is the inverse data covariance matrix containing the data

uncertainties σ d. The matrix C−1
d , like Cd, is diagonal due to the

assumption that the covariance between any non-identical pair of
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data is zero (Hobro 1999). The term � in eq. (12) is a regularization
term with the task of constraining the inversion, as described in the
following section.

2.3.2 Regularization of the inversion

In addition to the data misfit term of the objective function S we
require a further term � that regularizes the inversion process. This
regularization term allows us to influence the inversion such that
models with specific attributes are favoured, while models with un-
desirable properties are penalized. The regularization approach de-
scribed here is based on the definition of a model covariance matrix
Cm (e.g. Tarantola & Valette 1982; Korenaga et al. 1997; Soupios
et al. 1999). This matrix contains information on the variability al-
lowed for each model parameter, as well as their spatial correla-
tions. The model covariance matrix Cm may be used to describe
how a change in one model parameter affects its neighbouring pa-
rameters. The inverse model covariance matrix is divided into two
parts, one representing the velocity parameters [ C−1

v ], and the other
representing the interface parameters [ C−1

i ]:

C−1
m =

[
[C−1

v ] 0

0 [C−1
i ]

]
. (13)

The zeros in eq. (13) indicate that the cross-correlation between the
velocity and interface parameters is assumed to be zero.

Model covariances are defined in the following way. The distance
d between two velocity nodes is calculated as

d2 =
(

hx

�ax

)2

+
(

hz

�az

)2

, (14)

with hx and hz as the horizontal and vertical components of the vec-
tor between the node points, and �ax and �az as the covariance
influence ranges in the horizontal and vertical directions respec-
tively. These covariance influence ranges are defined a priori, and
may be obtained from geostatistical analysis, for example via inter-
pretation of stacked seismic sections (Bosch et al. 2002a) or from
well log data.

Three commonly used covariance functions (Isaaks & Srivastava
1989) are implemented into the model covariance matrix calcula-
tion.

(i) Gaussian:

cov = nσ 2e−3d2
, (15)

(ii) Spherical:

cov = nσ 2(1 − 1.5d + 0.5d3) if h < a, (16)

= 0 if h > a, (17)

(iii) Exponential:

cov = nσ 2e−3d , (18)

with σ as the variance parameter and cov as the velocity covariance.
The factor n, which is referred to as the nugget, is a value that
represents the inherent variability of the data. A small value of n
should always be used in order to avoid numerical problems with
ill-conditioned matrices. The Gaussian covariance function is well
adapted to smooth fields, since in this case the covariance stays high
in the vicinity of a node point. An exponential function is more suited
to rough fields in which the covariance decreases rapidly (Dubrule
2003). The tomographic inversions described below use a Gaussian
covariance distribution.

Now, the regularization term � can be written as

� = (mn+1 − mprior)
TC−1

m (mn+1 − mprior). (19)

Under the linearizing assumption of eq. (11), the data of the
(n + 1)th iteration can be expressed as

d(mn+1) = d(mn) + G(mn+1 − mn︸ ︷︷ ︸
�mn

), (20)

with �mn as the nth model update. The objective function S can
then be written as

S(mn+1) = (r − G�mn)TC−1
d (r − G�mn)

+ (mn+1 − mprior)TC−1
m (mn+1 − mprior). (21)

Hence, the gradient of S is calculated as

∇S = −2GTC−1
d (r − G�mn) + 2C−1

m (mn + �mn︸ ︷︷ ︸
mn+1

−mprior). (22)

In order to find the model update �mn that minimizes the residual
r, ∇ S is set to zero, resulting in

GTC−1
d r − C−1

m (mn − mprior) = (
GTC−1

d G + C−1
m

)
�mn . (23)

This equation can be transformed into a formulation that does not
contain C−1

m , which to obtain is computationally expensive:

CmGTC−1
d (dobs − dmn ) + (mprior − mn)︸ ︷︷ ︸ =

(
CmGTC−1

d G + I
)︸ ︷︷ ︸

A

�mn︸︷︷︸
x

, (24)

with the identity matrix I. In the case of the first iteration (mprior −
m1) = 0. Eq. (24) can be regarded as the simple linear equation

b = Ax, (25)

where A is the curvature of the misfit function S, and b is the di-
rection of its steepest gradient. Eq. (25) can be solved using the
biconjugate gradient algorithm, which is a generalized form of the
conjugate gradient algorithm, allowing the minimization of linear
equations that are not necessarily symmetric (Press et al. 1992). This
algorithm is fast and accurate and takes advantage of the sparsity of
the matrices G and Cm.

The joint inversion of interface depth and velocity involves
two independent types of parameters with different units (km and
km s−1) of unequal magnitude. The relative variability in the so-
lution of the two types of parameters is related to the choice of
variances in the prior model covariance matrix.

3 S Y N T H E T I C I N V E R S I O N T E S T

The new traveltime tomography algorithm was tested for an un-
known realistic crustal 2-D velocity model. This blind test was set
up by Colin Zelt and John Hole for the CCSS Workshop1 held in
October 2003. The model that was used to generate the data for
this test is 250-km long and extends to a depth of 40 km (Fig. 4d).
Synthetic wide-angle data were calculated with a 2-D viscoelastic
code for 51 shots with 5-km spacing. Traveltime data were provided
for 2779 receivers with 90-m spacing for each shot, with a constant
picking uncertainty of 25 ms (Fig. 2).

First-arrival traveltime tomography was performed using turning
rays in a single-layer model. The starting model was defined using

1http://www.geophysics.rice.edu/department/faculty/zelt/ccss/
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Figure 2. 141 729 first-arrival traveltime data provided by Colin Zelt as
input to the inversion. The picking uncertainty was set to a constant value of
25 ms.
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Figure 3. (a) Non-adaptive, and (b)–(d) adaptive gridding for the inversion
of the unknown velocity model. (a) Non-adaptive grid used in the inversion
of case three (regular triangle side length 2 km). (b) Parametrization for
the starting model of case four (regular triangle side length 8 km). (c) Grid
densification after three inversion steps (regular triangle side length 4 km).
(d) Final grid densification after 10 inversion steps (regular triangle side
length 2 km).

a linear vertical velocity gradient between 4.0 km s−1 at the sur-
face and 8.0 km s−1 at 40-km depth. Four different velocity grid
parametrizations were tested.

(i) In the first case, the side length of the equilateral triangles in
the velocity grid was set to a constant value of to 5 km throughout
the inversion, using horizontal and vertical covariance ranges of 20
km and 10 km, respectively.

(ii) In the second case, the velocity grid consisted of equilat-
eral triangles with 3-km side length, using horizontal and vertical
covariance ranges of 3 km.

(iii) In the third case, the grid consisted of equilateral triangles
with 2-km side length (Fig. 3a), using horizontal and vertical co-
variance ranges both of 4 km.

(iv) In the fourth case, adaptive grid parametrization and covari-
ance ranges were chosen. The first three iterations were performed

in a velocity grid consisting of equilateral triangles of 8-km side
length (Fig. 3b). Then, all triangles that were intersected by at least
three rays were subdivided into four regular triangles of 4-km side
length (Fig. 3c). A second grid refinement was performed after 10
inversion iterations in total, resulting in triangles of 2-km side length
in the region covered by rays (Fig. 3d). The corresponding horizon-
tal and vertical covariance ranges were adapted from 20 km and
10 km for the first three iterations, to 10 km and 5 km for iterations
3 to 10, and to 3 km and 3 km for iterations 10 to 20.

The χ2 for all four cases are shown in Fig. 5. All curves converged
after 20 iterations: for case one to 3.1, for case two to 1.86 and for
cases three and four both to 1.04. The larger remaining χ 2 values
for cases one and two illustrate that model variations on a scale
smaller than 3 km are required to fit the data satisfactorily. The χ2

curves for cases one, two and three show that smaller cell sizes lead
to slower convergence rates. The adaptive parametrization in case
four combines the fast convergence for large cells with a small final
χ 2 value of 1.04. The grid refinement after three and 10 inversion
iterations can be seen in the χ2 curve of case four as a slight increase.

The inversion results for cases three and four are shown in
Figs 4(a) and (b). The resulting velocity models differ in character.
In case three the region covered by rays is smaller than in case four,
and velocity anomalies are smeared along the ray paths (Fig. 4a).
The model obtained using the adaptive parametrization and regu-
larization appears smoother and more detailed (Fig. 4b). Case four
leads to a model with minimum structure that allows the data to be
fitted within the picking uncertainty to an almost ideal value (1.04)
and is therefore the preferred model for this inversion test. Adaptive
parametrization progressing from large grid cells to smaller triangles
leads to a recovery of the long-wavelength structures first, and the
subsequent addition of more detail at later iterations. This effect is
supported by the adaptive regularization with decreasing covariance
ranges for later inversion stages. The initial recovery of the large-
scale features of the model in the case of adaptive parametrization
and regularization permits greater illumination at later stages of the
inversion.
The quality of the model recovery can be seen in the vertical and
horizontal velocity profiles shown in Figs 6 and 7. Velocities for the
starting model used in the inversion, for the inversion result, for the
CCSS model, and for a filtered version of the CCSS model (Gaussian
filter with 10-km width and 5-km height) are plotted. The vertical
velocity profiles taken at 100 km and 200 km horizontal coordinate
demonstrate a good recovery of the velocity model. The horizontal
velocity profiles in Fig. 7 demonstrate the effect of decreasing ray
coverage at the sides of the model with increasing depth. Traveltime
tomography is not suited to the recovery of the small-scale velocity
variations that can be seen in the CCSS test model velocity profiles.
However, the smooth velocity model provided by traveltime inver-
sion may be used as the starting model for computationally more
expensive techniques, such as full-waveform inversion. The vertical
velocity profile taken at 200-km distance shows that the low-velocity
anomaly at about 8-km depth is indicated in the inversion result.

4 I N V E R S I O N O F A R E A L
L O N G - O F F S E T S E I S M I C DATA S E T

The new traveltime inversion algorithm was next applied to a large-
aperture reflection seismic data set, acquired at the North East At-
lantic Margin in 1997. The objective of this experiment was the
production of a seismic image and velocity profile of the geology
beneath basaltic layers using both near- and far-offset data. One
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Figure 4. (a) Inversion result after 20 iterations for the non-adaptive in-
version (case three). (b) Inversion result after 20 iterations for the adaptive
inversion (case four). The ray coverage in (a) and (b) is indicated by shading
the unconstrained regions of the models. (c) The true velocity model filtered
with a Gaussian filter (width 10 km, height 5 km) for comparison with the
results obtained in this study. (d) The true velocity model that was used for
the generation of the traveltime data shown in Fig. 2.

single seismic line was recorded as a synthetic aperture profile with
two passes of two vessels, and a constant vessel offset of 12 km and
24 km respectively for each pass. Both ships towed 6-km-long
streamers and each had a 5800-cubic-inch source array. The sources
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Adaptive triangles: 8 km, 4 km (iter. 3), 2 km (iter 10)

Figure 5. χ2 values after 20 iterations for the models parametrized using
constant triangles of 5 km side length (case 1), constant triangles of 3 km
side length (case 2), constant triangles of 2 km side length (case 3), and the
adaptive parametrization using triangle side lengths of 8, 4 and 2 km side
lengths (case 4). This figure shows that fine parametrization is needed to
reach χ2 values close to 1.

were fired alternately with an overall shot interval of 50 m, and a shot
interval of 100 m for each vessel. The hydrophone group spacing
within each streamer was 25 m, the sampling interval 4 ms, and the
maximum recording length 18 s. This recording geometry resulted
in data over an offset range from 175 m to 30 km. In total, about
700 shot super-gathers with offsets up to 30 km were provided. An
example shot super-gather with traveltime picks superimposed is
shown in Fig. 8. These data and traveltime picks are the subject of
the processing, traveltime inversion, and discussion presented be-
low.

The survey described here was especially designed to image struc-
tures below extrusive basalt flows and intrusive sills that were em-
placed along the North Atlantic Margin through Tertiary volcanic
episodes (Joppen & White 1990; England & Hobbs 1997). Hydro-
carbon reservoirs are thought potentially to be trapped in Mesozoic
sediments underneath the basaltic cover (Roberts et al. 1999). With
the extension of oil and gas exploration into deep-water frontier
regions, sub-basalt imaging techniques are becoming increasingly
interesting. Furthermore, knowledge about the structure of the base-
ment in this region is of importance for the understanding of basin
evolution. Standard seismic reflection profiling fails to record sub-
basalt events, since the strong impedance contrast at the sediment–
basalt interface allows only little energy to penetrate into deeper
layers. In addition, complex multiples are generated at the top basalt
interface, whose rough surface results in scattering of the energy and
in poor signal-to-noise ratios. These difficulties might be overcome
when seismic energy is recorded at very large offsets. Refracted en-
ergy and long-offset reflections as well as converted phases could
be used to study the thickness and geometry of the basalt layers,
the sediments, and the basement below. The traveltime tomographic
technique described above should be able to recover a smooth ve-
locity model from the data.

Bosch et al. (2002a) have independently inverted this data set us-
ing a geostatistical traveltime inversion method, based on the mod-
elling and ray-tracing algorithm described by Hobro et al. (2003).
The major difference from this work is that our parametrization is
based on an adaptive triangulated grid, whereas in the referenced
work the parametrization is fixed. In order to be able to compare
the result obtained with the new algorithm to the findings of Bosch
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Figure 7. Horizontal velocity profiles through the CCSS velocity model (thin dotted line), the filtered CCSS model (thick dashed line) and the adaptive
inversion result (thick solid line) for constant depths of 2, 5, 10 and 15 km. The velocity in the starting model is shown as a thin line with alternating dots and
dashes.

et al. (2002a) we decided to use the same traveltime data as input
for our joint velocity and interface inversion. The starting model for
the inversion consisted of seven layers (Fig. 9a). The seafloor was
fixed and taken from the result obtained by Bosch et al. (2002b)
(Fig. 9c). Horizontal interfaces were located in the starting model
for the new inversion approach at 2.0, 2.5, 3.5, 4.5 and 7.0 km depth.
The velocity of the first layer was fixed to 1.49 km s−1, and the other
layers had a velocity of 2.1 km s−1 at 2.0 km depth with a vertical
velocity gradient of 0.5 s−1 assigned. All interfaces and velocities

of layers below the seafloor were subjected to a simultaneous inver-
sion. The side length of the regular triangles in all grids was 3.5 km.
Horizontal and vertical covariance ranges for the inversion of the
velocities in the individual layers are listed in Table 1. The lateral
covariance range for the interface nodes was set to 2.0 km for all
interfaces.

The eight phases used in the inversion were reflections from the
first, second, and third sediment reflectors, reflections from the top
of the sills, and long-offset reflections from the top of the basement.
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Figure 8. Example shot super-gather with picks superimposed (source at 45 km horizontal coordinate).

Turning rays were included from within the sediments just above
the sills, from within the sub-sill sediments, and from within the
basement. All eight phases were used simultaneously in the joint
interface and velocity inversion.

The inversion result after eight iterations is shown in Fig. 9(b).
The region of no ray coverage (final iteration) is shaded pale. The
result obtained by Bosch et al. (2002b) is shown for comparison in
Fig. 9(c). The difference between Figs 9(b) and (c) and the interfaces
of both results are plotted in Fig. 9(d). We see that sediment and
sill interfaces match well and that their local trends are in good
agreement. The sill interface obtained with the new algorithm seems
to be more plausible than the strongly oscillating interface derived
by Bosch et al. (2002b), shown in Fig. 9(c). The results differ most
for the basement interface. The general structure, consisting of a
central high and deeper regions to both sides, is recovered with
both methods. The velocities of Figs 9(b) and (c) match well. Note
the agreement for the low-velocity zone in the second sedimentary
layer between 54 and 65 km horizontal coordinate, the zone of higher
velocity just underneath in the next layer, and especially the region of
high velocity above the basement between 37.5 and 46 km horizontal
coordinate. The velocity of the new result in the basement high
between 44 and 50 km horizontal coordinate is not well constrained,
since there is little ray coverage in this region, with hardly any
crossing ray paths.

The comparison between the model obtained with the new algo-
rithm and the results presented by Bosch et al. (2002b) demonstrates
that the new method is very well suited to performing a joint veloc-
ity and interface inversion. Furthermore, this experiment confirms
independently the same general structure of the area obtained from
two different inversion methods.

Fig. 10 shows the seismic section after post-stack depth migration
using the velocity model obtained with the new traveltime tomog-
raphy algorithm. The upper part of the model down to the sills is

well resolved within the region of ray coverage (between 37.5 and
66 km horizontal coordinate). The interfaces for the three sedimen-
tary reflectors agree with the seismic image. In the case of the inter-
face that was chosen to represent the discontinuous sill reflectors it
can be seen that the general trend fits the major reflective events. The
basement interface does not seem to match structures in the seismic
section, except for the region between 33 and 37 km horizontal co-
ordinate, where maybe the shadow of a rotated basement block is
visible. In order to improve the inversion result in the deeper region
of the model additional traveltime picks may be used to constrain
the model. However, the low signal-to-noise ratio for reflected and
refracted events from below the basalt as well as the difficulty in
assigning the correct ray path to a long-offset refracted event render
the task difficult in this case.

5 C O N C L U S I O N S

A new 2-D traveltime tomography method has been presented that
is able to efficiently simulate and invert densely sampled seismic
long-offset reflection and refraction data. The method makes use
of an adaptive model parametrization, optimizing the number of
parameters involved in the inversion and allowing great flexibility in
model definition. The semi-analytical ray-tracing procedure allows
fast and accurate forward modelling through the triangulated grids.
Velocity and interface Fréchet derivatives are calculated analytically,
allowing a linearized inversion approach to the non-linear problem.
Regularization based on model covariances allows the inclusion of
a priori knowledge and adaptive smoothing constraints.

An inversion test performed on a synthetic crustal model demon-
strated superior results obtained with adaptive model parametriza-
tion and inversion regularization compared with non-adaptive
parametrization. Starting with a coarse model parametrization, the
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Figure 9. Comparison between results obtained with the new traveltime tomography algorithm and results obtained by Bosch et al. (2002b). (a) Starting model
for the inversion with the new algorithm. (b) The corresponding inversion result after eight iterations obtained by using the same traveltime data as Bosch. The
region of no ray coverage is shaded pale. (c) Result obtained by Bosch et al. (2002b). (d) Difference between (b) and (c). The black region in (d) is due to
velocities beyond the range of the colour scale. Parts (a), (b) and (c) all use the same colour scale.

Table 1. Horizontal (�ax) and vertical (�az) covariance ranges used in the
inversion for the individual layers.

Layer �ax covariance [km] �az covariance [km]

Seawater — —
Sediment 1 4.0 0.5
Sediment 2 4.0 0.5
Sediment 3 4.0 0.5
Sediment 4 4.0 1.0
Sediment 5 15.0 1.0
Basement 18.0 2.0

long-wavelength features of the model are recovered. With decreas-
ing misfit the model parametrization is refined, allowing more detail
to emerge.

A second inversion test using real seismic long-offset traveltime
data resulted in the recovery of an interface–velocity model. The
comparison with independently obtained results showed good agree-
ment. While the velocity model is well determined in the upper part,

it is less certain in the deeper region due to the difficulty of obtaining
data for weak sub-basalt events, which limits the capabilities of the
inversion in this case. This result demonstrates the ability of the new
algorithm to invert densely sampled refraction and reflection data
successfully.

The new algorithm is a suitable tool for the traveltime inversion
of densely sampled seismic data sets, providing velocity models
that can be used as starting models for more advanced inversion
techniques, such as full-waveform inversion, or to be used for pre-
stack depth migration.
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Červený, V., 2001. Seismic Ray Theory, Cambridge Univ. Press, Cambridge.
Cox, B. & Verschuur, D.J., 2001. Tomographic inversion of focusing opera-

tors, EAGE, Expanded Abstracts, 63rd Mtg, M35.
Dubrule, O., 2003. Geostatistics for seismic data integration in earth models:

2003 Distinguished Instructor Short Course & EAGE, SEG.
England, R.W. & Hobbs, R.W., 1997. The structure of the Rockall Trough

imaged by deep seismic reflection profiling, J. geol. Soc. Lond., 154, 497–
502.

Failly, M., Singh, S.C. & Hobbs, R.W., 1993. Lower crustal reflectivity from
waveform inversion, Geophys. J. Int., 115, 410–420.
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A P P E N D I X A : L I N E A R
I N T E R P O L AT I O N I N A T R I A N G L E

The formula for the linear interpolation of a value q defined at the
vertices of a triangle at location x within the triangle is

q(x) = q0 + ∇q · (x − x0), (A1)

with q0 being the value of q at location x0, and ∇q as the gradient
of the scalar field of q. Knowing the values qi at the vertices xi

and expressing the differences with respect to the first vertex, the
gradient can simply be found from

∇q =
(

(x2 − x1)T

(x3 − x1)T

)−1 (
q2 − q1

q3 − q1

)
= X

(
q2 − q1

q3 − q1

)
, (A2)

where X is a 2 × 2 matrix.

A P P E N D I X B : D E F I N I T I O N
O F I N T E R FA C E S

The cubic Hermite polynomial f (x) is used to interpolate the inter-
face between node points based on the coordinate information of the
nodes (x1, z1) and (x2, z2) and the interface depth gradients f ′(x1)
and f ′(x2). The cubic Hermite polynomial f (x) is defined as (Hoff
1996)

f (x) = Ax3 + Bx2 + Cx + D, (B1)

with

A = 2
(

f (x1) − f (x2)
) + f ′(x1) + f ′(x2), (B2)

B = 3
(

f (x2) − f (x1)
) − 2 f ′(x1) − f ′(x2), (B3)

C = f ′(x1), (B4)

D = f (x1), (B5)

and the constraint that f (x1) = 0 and f (x2) = 1. In matrix notation
we can write

U =




x3

x2

x
1


 , (B6)

H =




2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0


 , (B7)

G =




f (x1)
f (x2)
f ′(x1)
f ′(x2)


 , (B8)

and the interface depth for any value x between x1 and x2 becomes

f (x) = UT · H · G. (B9)
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A P P E N D I X C : F R É C H E T D E R I VAT I V E
C A L C U L AT I O N

C1 Velocity parameter Fréchet derivatives

The effect of small changes in the velocity of a model parameter will
be related to changes in traveltime. The traveltime T in an isotropic
medium is the integral over the slowness u along the ray:

T =
∫ s2

s1

u ds, (C1)

with the arclength s. The partial derivative of the traveltime with
respect to model parameter m, which represents the u2 values at the
three velocity node points of each triangle, can be written as

∂T

∂m
= ∂

∂m

∫ s2

s1

u ds. (C2)

Assuming no change to the ray path according to Fermat’s principle
one can write

∂T

∂m
=

∫ s2

s1

∂u

∂m
ds. (C3)

With the ray sampling variable τ instead of the arclength s, where
ds = u dτ , we can write

∂T

∂m
=

∫ τ2

τ1

∂u

∂m
u dτ. (C4)

Since ∂(u2) = 2u ∂u , it follows that

∂T

∂m
= 1

2

∫ τ2

τ1

∂(u2)

∂m
dτ. (C5)

Differentiating eq. (1) with respect to model parameter m gives

∂
(
u2(x)

)
∂m

= ∂
(
u2

0

)
∂m

+ ∂��

∂m
· x(τ ), (C6)

and substituting eq. (4) into eq. (C6) we obtain

∂u2(x)

∂m
= ∂u2

0

∂m
+ ∂��

∂m
·
[

1

4
��(τ − τ0)2 + p(τ0)(τ − τ0) + x(τ0)

]
,

(C7)

Eq. (C7) can be written as a quadratic function of τ :

∂u2(x)

∂m
= 1

4

∂��

∂m
· ��(τ − τ0)2 + ∂��

∂m
· p(τ0)(τ − τ0)

+ ∂��

∂m
· x(τ0) + ∂(u2

0)

∂m
. (C8)

Substituting eq. (C8) into eq. (C5) and subsequent integration yields

∂T

∂m
= 1

2

[
1

12

∂��

∂m
· ��(τ − τ0)3 + 1

2

∂��

∂m
· p(τ0)(τ − τ0)2

+
(

∂��

∂m
· x(τ0) + ∂(u2

0)

∂m

)
(τ − τ0)

]
. (C9)

If q = u2 in eqs (A1) and (A2) then nabla; q = ΓΓ. Differentiating
expression (A2), we have

∂��

∂u2
1

= −X

(
1
1

)
, (C10)

∂��

∂u2
2

= X

(
1
0

)
, (C11)

∂��

∂u2
3

= X

(
0
1

)
. (C12)
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Figure C1. (a) Reflection and (b) transmission at an interface with the
slowness vectors of the incident, reflected, and transmitted rays I, R, and T.
β i is the angle between I and the vertical V, while βr and β t are the angles
between R, respectively T, and V. u1 and u2 are the slowness values of the
first and second medium. n1 and n2 are the relevant interface nodes.

Differentiating eq. (A1),

∂u2
0

∂u2
1

= 1 − ∂��

∂u2
1

.(x1 − x0), (C13)

∂u2
0

∂u2
2

= − ∂��

∂u2
2

.(x1 − x0), (C14)

∂u2
0

∂u2
3

= − ∂��

∂u2
3

.(x1 − x0). (C15)

In order to be able to update the velocity of the model it is neces-
sary to convert the Fréchet derivatives with respect to u2 to Fréchet
derivatives with respect to velocity v. This is achieved by multipli-
cation of ∂T /∂u2 with ∂(u2)/∂v = −2/v3, so that

∂T

∂v
= − 2

v3

∂T

∂u2
. (C16)

C2 Interface parameter Fréchet derivatives

Interface Fréchet derivatives are computed for all interface nodes
whose depths have an effect on the traveltime of rays. The procedure
steps along every ray in the model and determines the ray–interface
intersections, discriminating between the transmission and reflec-
tion cases. Formulations for the calculation of traveltime deriva-
tives for interface depth can be found in Bishop et al. (1985), Mc-
Caughey (1995), or Hua & Liu (1995). We follow the description
of McCaughey (1995) since it is based on the slowness vectors of
incident, reflected, and transmitted rays, and was therefore easy to
implement. In the scheme presented here, traveltime derivatives for
the horizontal coordinate of the interface node are not taken into
account. This means that interface nodes may move only vertically
during the inversion.
The angle β i between the slowness vectors of the incident ray I and
the vertical V (Fig. C1) is identical for the transmission and the
reflection case. It can be calculated via the following expression:

cos βi = I · V

|I| · |V| . (C17)

In the case of the reflected ray (Fig. C1a), the angle β r between the
slowness vector of the reflected ray R and the vertical V replaces
β i in eq. (C17) and R replaces I, while in the case of transmission
(Fig. C1b), β i is replaced by the angle β t between the slowness
vector of the transmitted ray T and the vertical V, and I is replaced
by T.
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For each ray intersecting an interface we will obtain two Fréchet
derivatives, one for each of the two interface nodes n1 and n2 on
either side of the ray intersection point. In the reflection case the
traveltime derivative is

∂t

∂n j
= u1(cos βi − cos βr)

∂ f

∂z j
, j = 1, 2, (C18)

where u1 is the slowness of the primary medium. ∂z/∂z1 and ∂z/∂z2

are the partial derivatives of the cubic Hermite polynomial f (x) that
describes the interface (eq. B1) with respect to the depths z1 and z2

of the nodes n1 and n2:

∂ f

∂z1
= 2x3 − 3x2 + 1, (C19)

∂ f

∂z2
= −2x3 + 3x2. (C20)

In the transmission case the Fréchet derivatives for the interface
nodes are expressed as

∂t

∂n j
= (u1 cos βi − u2 cos βt)

∂ f

∂z j
, j = 1, 2, (C21)

with u2 being the slowness of the second medium.
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